

moberst.com

Learning Treatment Policies from Observational Data

Mike Oberst MIT

Models, Inference, and Algorithms (MIA) Primer

Get the slides here!

Overview

Goals

- By the end of this primer, you should understand...
 - What a **causal effect** is, and when we can infer it from observational data *"What is the effect of treatment vs. placebo?"*
 - How **causal effect estimation** is a special case of **policy evaluation** *"What would happen if I implemented a new set of guidelines?"*
 - How to use policy evaluation to **learn optimal policies** *"What is the optimal treatment strategy?"*

Goals

- By the end of this primer, you should understand...
 - What a **causal effect** is, and when we can infer it from observational data *"What is the effect of treatment vs. placebo?"*
 - How causal effect estimation is a special case of policy evaluation *"What would happen if I implemented a new set of guidelines?"*
 - How to use policy evaluation to **learn optimal policies** *"What is the optimal treatment strategy?"*

Causal Effects

(and related quantities, like the Average Treatment Effect)

...

What is a causal effect?

- What is the effect of...
 - **Thiazide** on **cardiac outcomes** in **hypertensive patients**? [1]
 - Hydroxychloroquine on adverse events in COVID-19 patients? [2]
- Causal questions from large observational datasets

Conclusions of an Observational Study

THE LANCET

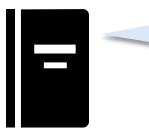
ARTICLES | VOLUME 394, ISSUE 10211, P1816-1826, NOVEMBER 16, 2019

Comprehensive comparative effectiveness and safety of first-line antihypertensive drug classes: a systematic, multinational, large-scale analysis

Prof Marc A Suchard, MD 🛛 🖄 🖂 Martijn J Schuemie, PhD 🛛 Prof Harlan M Krumholz, MD 🛛 Seng Chan You, MD 🖉 RuiJun Chen, MD

Nicole Pratt, PhD et al. Show all authors

Published: October 24, 2019 DOI: https://doi.org/10.1016/S0140-6736(19)32317-7 🛛 🦲 Check for updates

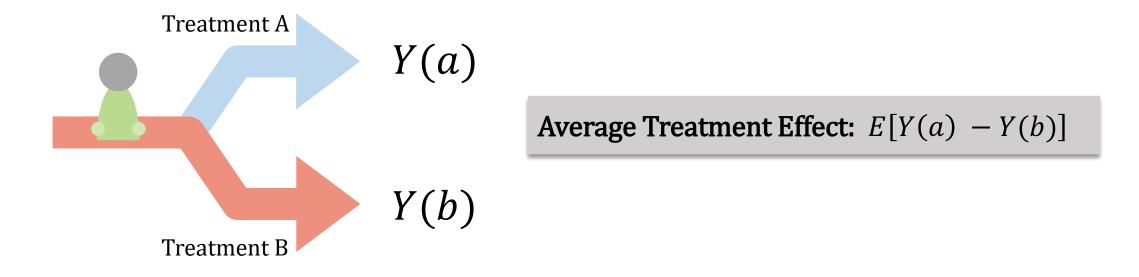


"thiazide [...] showed better primary effectiveness than [ACE] inhibitors" [1]

[1] M. A. Suchard et al., "Comprehensive comparative effectiveness and safety of first-line antihypertensive drug classes : a systematic, multinational, large-scale analysis," Lancet, vol. 6736, no. 19, pp. 1–11, 2019.

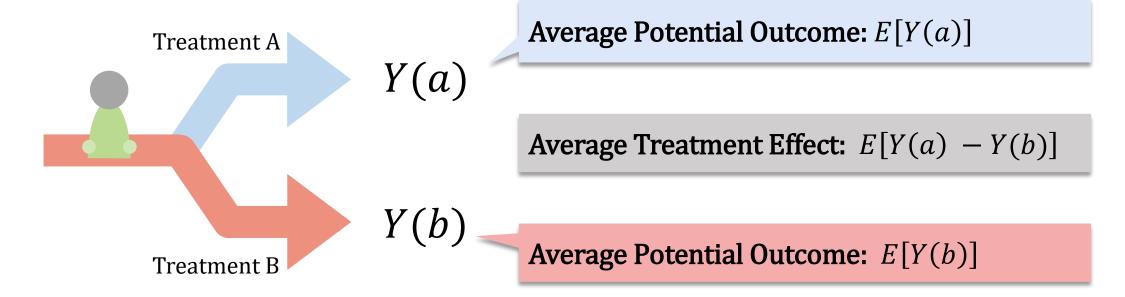
"What is the effect" as a causal question

Every patient has a set of potential outcomes Y(t), corresponding to different treatment decisions t.



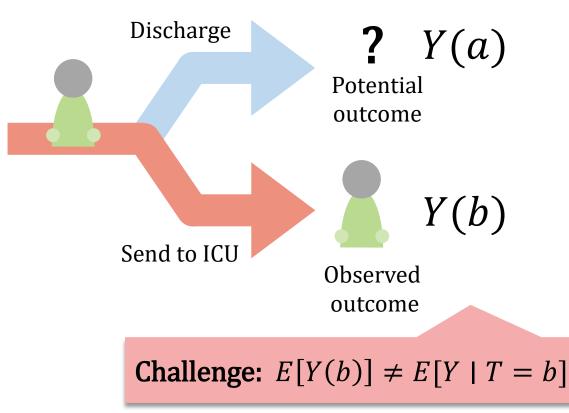
"What is the effect" as a causal question

Every patient has a set of potential outcomes Y(t), corresponding to different treatment decisions t.



I will refer to all these quantities as "causal effects", though that is more commonly used to refer to a contrast like the Average Treatment Effect

The challenge: We don't observe all outcomes!



Illustrative Example

- Suppose COVID-19 patients who are sent to the ICU have higher mortality rates
- Should we stop sending patients to the ICU?

Correlation does not imply causation

Correlation does not imply causation

Carefully chosen correlation **can** imply causation

(under some untestable assumptions)

1. Causal Effects

3

From Correlation to Causation

Consistency

No interference

When treatment *t* is given, we observe Y(t)

Your outcome is not impacted by the treatments of others

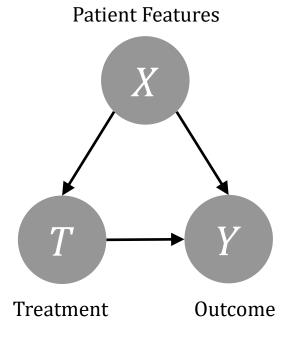
No unmeasured confounding

We have measured all relevant confounders

Overlap / Coverage

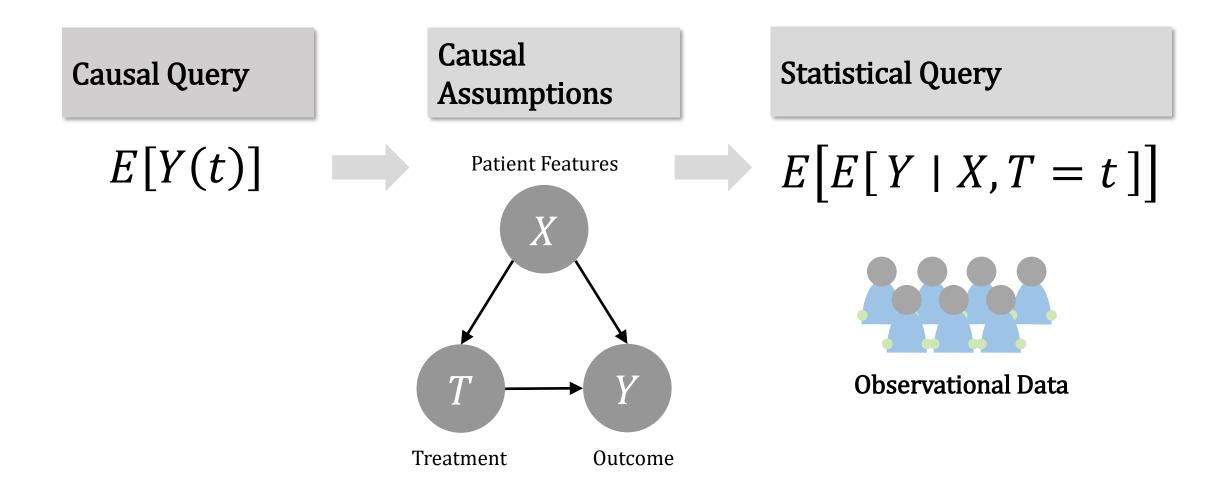
All types of patients receive all treatments*





*More on this later, when we discuss policy evaluation

From Correlation to Causation



Average Potential Outcomes $E[Y(a)] = E_x[E[Y | X, T = a]]$

Y

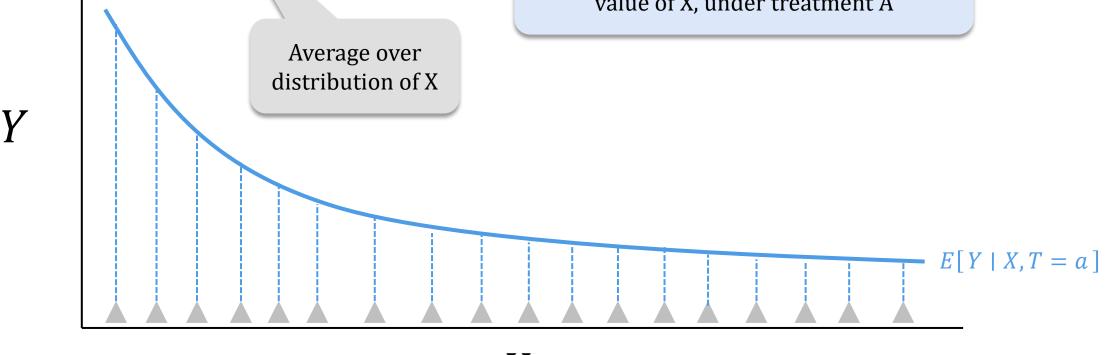
Average Potential Outcomes $E[Y(a)] = E_x[E[Y | X, T = a]]$

Expected conditional outcome for a given value of X, under treatment A



X

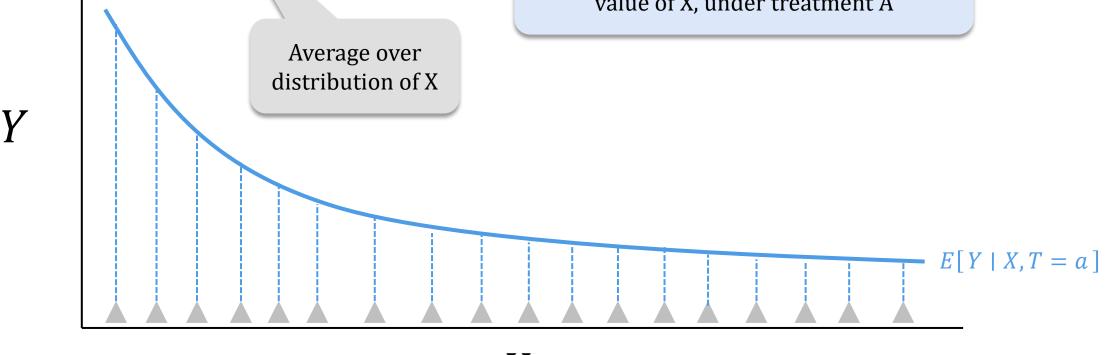
Average Potential Outcomes $E[Y(a)] = E_x [E[Y | X, T = a]]$ Expected conditional outcome for a given value of X, under treatment A



Average Potential Outcomes $E[Y(a)] = E_x \left[E[Y \mid X, T = a] \right]$ Expected conditional outcome for a given value of X, under treatment A Average over distribution of X Y

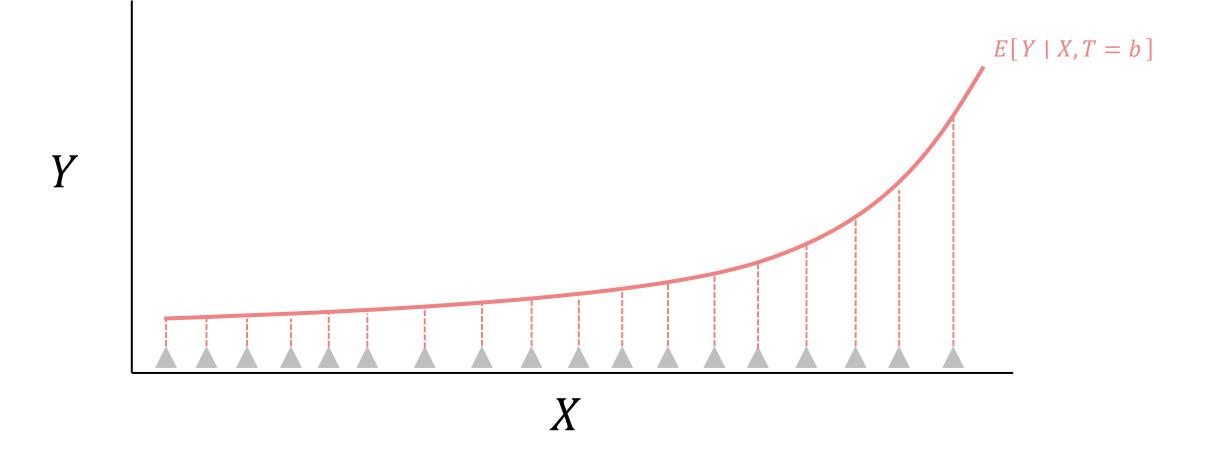
$$E[Y \mid X, T = a]$$

Average Potential Outcomes $E[Y(a)] = E_x [E[Y | X, T = a]]$ Expected conditional outcome for a given value of X, under treatment A



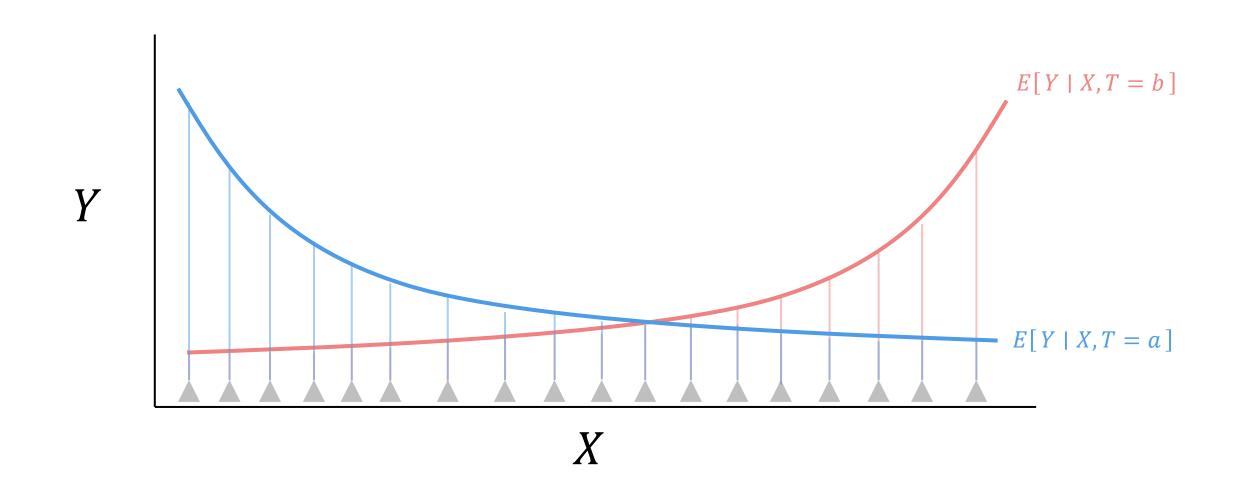
What about a different treatment?

 $E[Y(b)] = E_{\chi}[E[Y \mid X, T = b]]$



1. Causal Effects

What is the Average Treatment Effect?

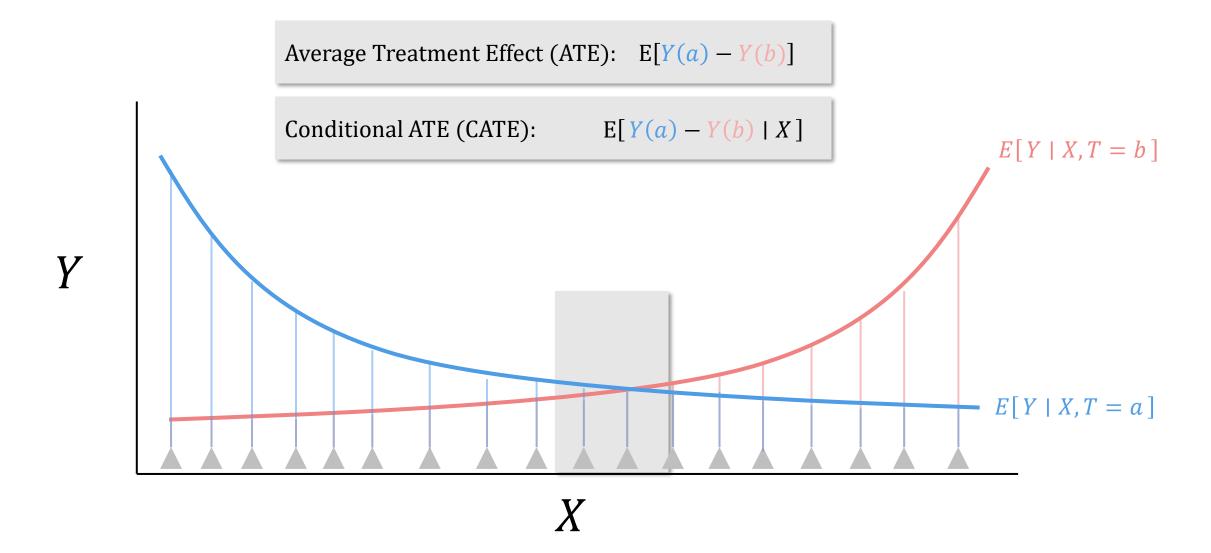


1. Causal Effects

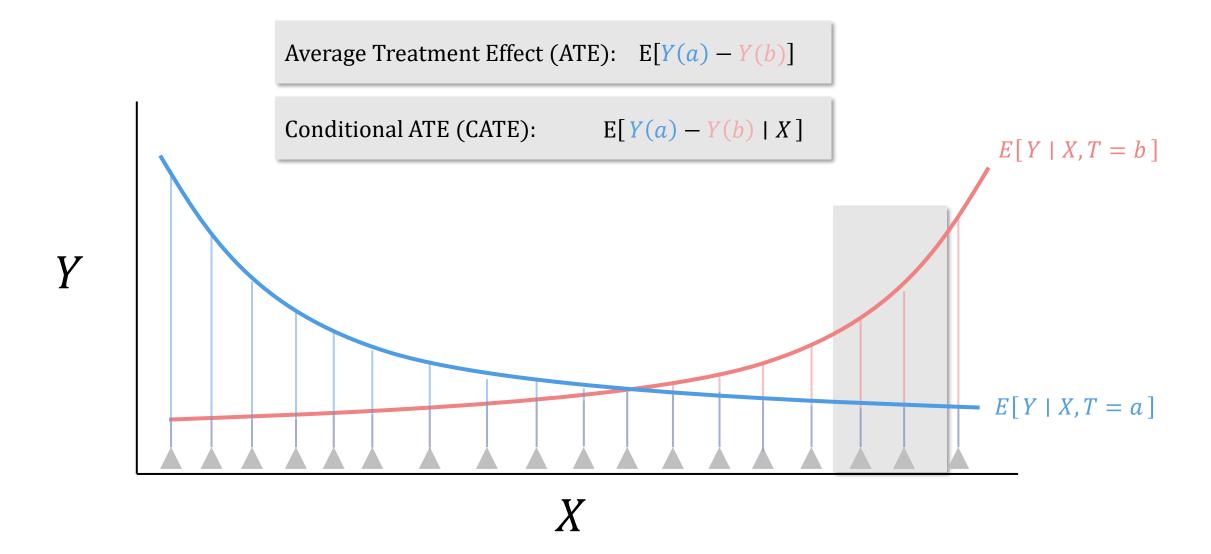
What is the Average Treatment Effect?

Average Treatment Effect (ATE): E[Y(a) - Y(b)] $E[Y \mid X, T = b]$ Y $E[Y \mid X, T = a]$

What is the (Conditional) Average Treatment Effect?



What is the (Conditional) Average Treatment Effect?

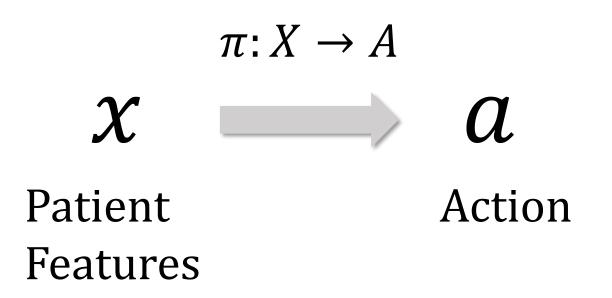


Goals

- By the end of this primer, you should understand...
 - What a **causal effect** is, and when we can infer it from observational data *"What is the effect of treatment vs. placebo?"*
 - How **causal effect estimation** is a special case of **policy evaluation** *"What would happen if I implemented a new set of guidelines?"*
 - How to use policy evaluation to learn optimal policies "What is the optimal treatment strategy?"

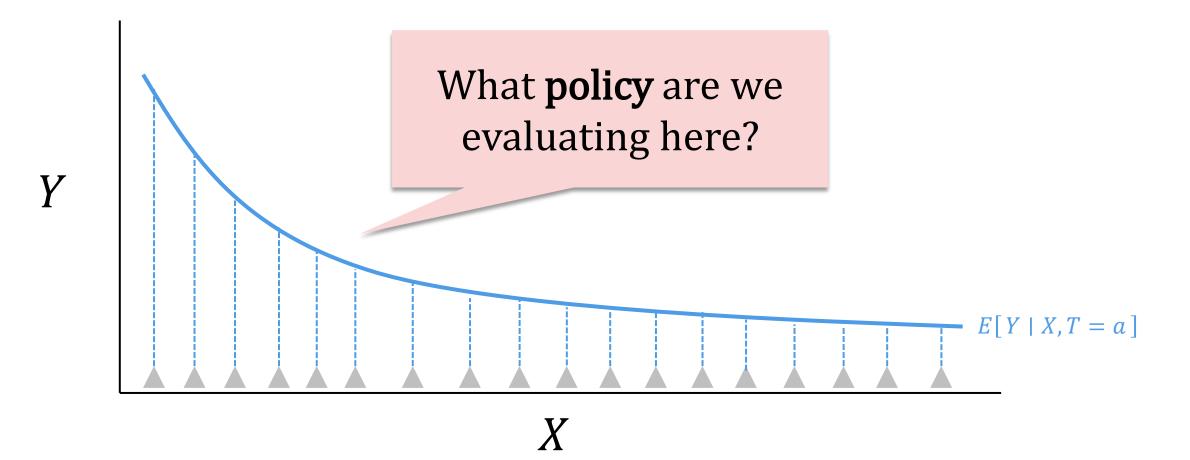
What is a policy?

• A policy maps from **observed features** to **recommended actions**

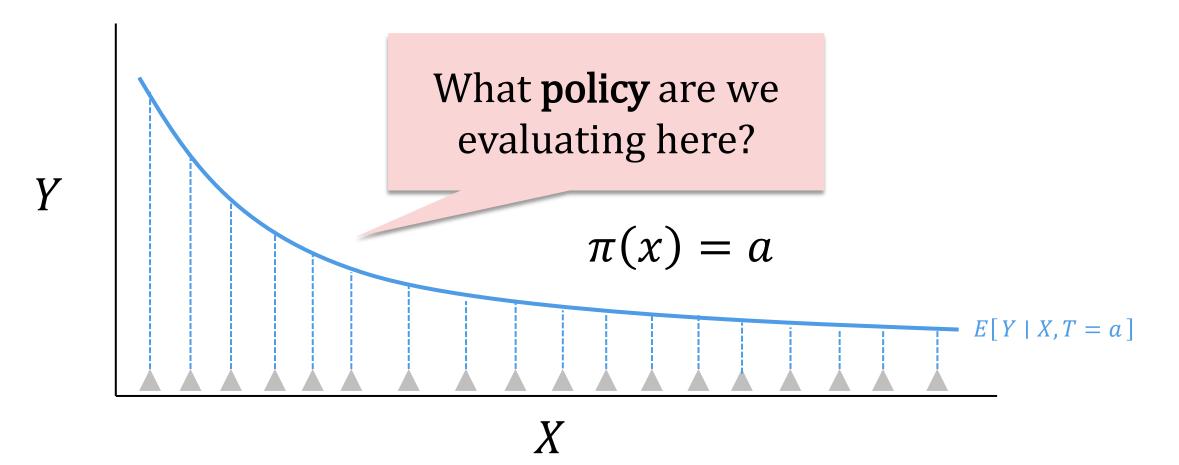


(Or a distribution over actions)

Causal Effects as Policy Evaluation $E[Y(a)] = E_x [E[Y | X, T = a]]$

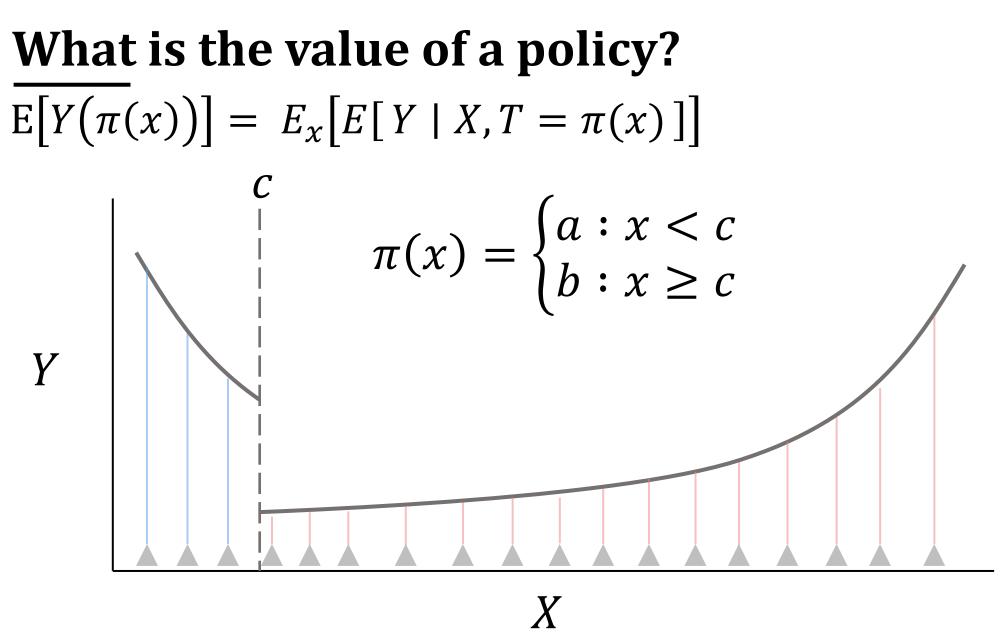


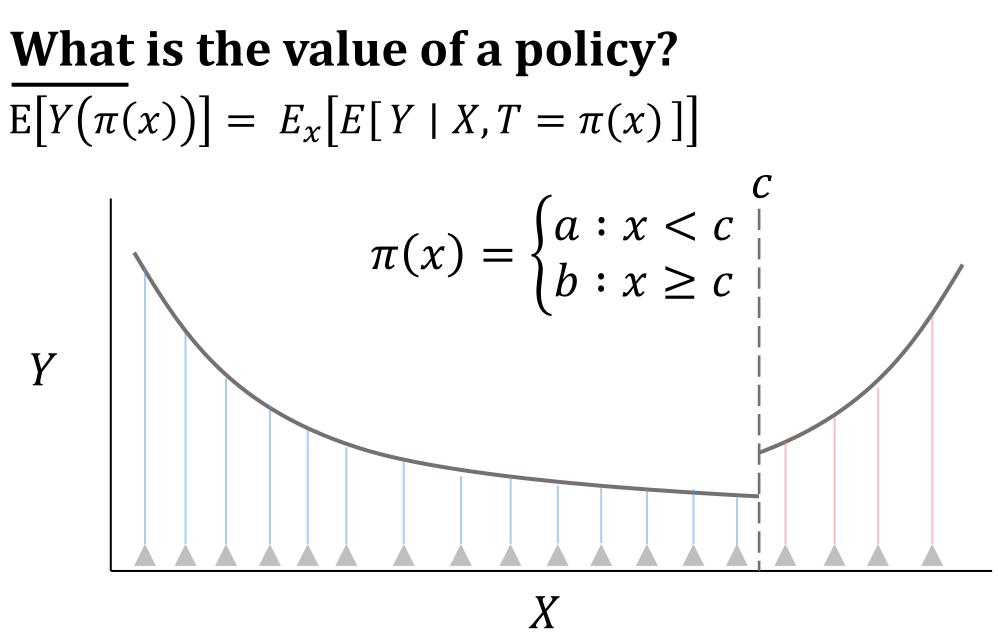
Causal Effects as Policy Evaluation $E[Y(a)] = E_x [E[Y | X, T = a]]$





X





How do we evaluate a policy? $E[Y(\pi(x))] = E_x[E[Y | X, T = \pi(x)]]$

Outcome Regression

$$\widehat{E}\left[Y(\pi(x))\right] = \frac{1}{n} \sum_{i=1}^{n} f(x_i, \pi(x_i)) \qquad f(x, t) \approx E[Y \mid X = x, T = t]$$

How do we evaluate a policy? $E[Y(\pi(x))] = E_x[E[Y | X, T = \pi(x)]]$

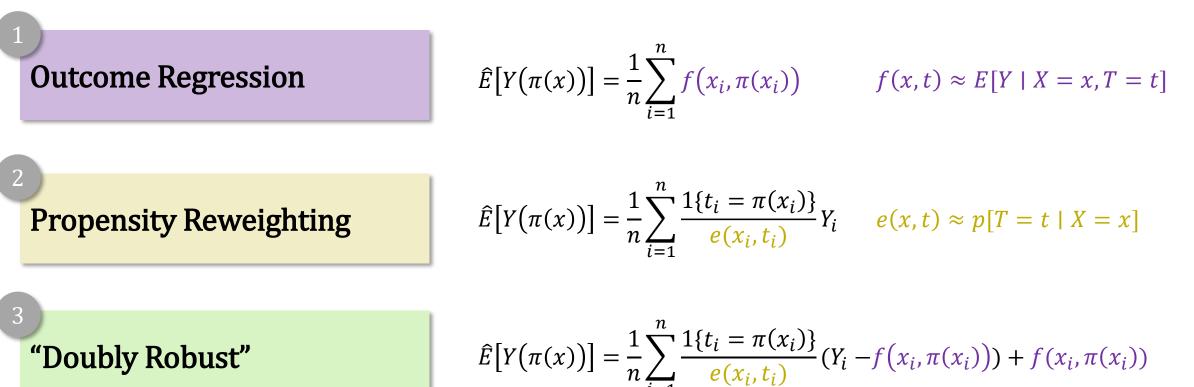
$$\widehat{E}\left[Y(\pi(x))\right] = \frac{1}{n} \sum_{i=1}^{n} f(x_i, \pi(x_i)) \qquad f(x, t) \approx E[Y \mid X = x, T = t]$$

Propensity Reweighting

Outcome Regression

$$\hat{E}[Y(\pi(x))] = \frac{1}{n} \sum_{i=1}^{n} \frac{1\{t_i = \pi(x_i)\}}{e(x_i, t_i)} Y_i \qquad e(x, t) \approx p[T = t \mid X = x]$$

How do we evaluate a policy? $E[Y(\pi(x))] = E_x[E[Y | X, T = \pi(x)]]$



Which policies can we evaluate?

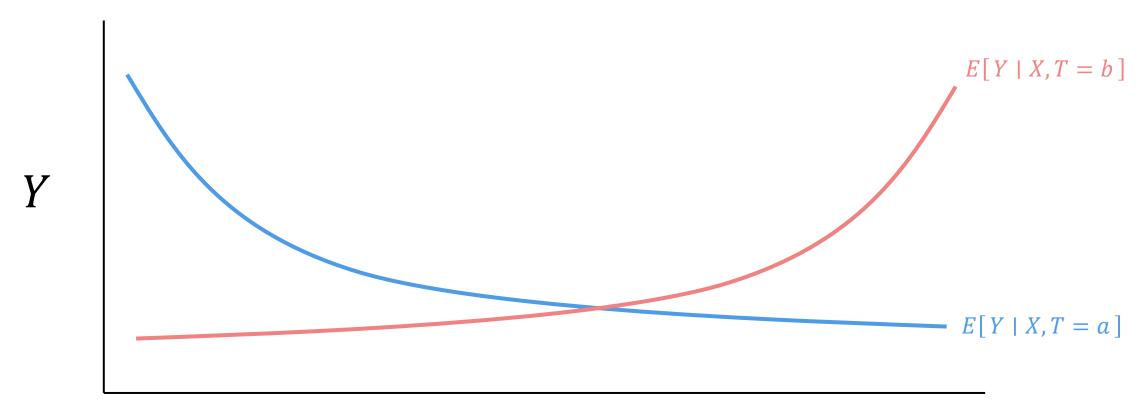
(alternatively: For what types of patients can we evaluate a fixed policy?)

Which policies can we evaluate?

When treatment *t* is Consistency given, we observe Y(t)**Patient Features** Your outcome is not X No interference impacted by the treatments of others 3 We have measured all No unmeasured confounding relevant confounders Treatment Outcome All types of patients **Overlap / Coverage** receive all treatments*

*More on this later, when we discuss policy evaluation

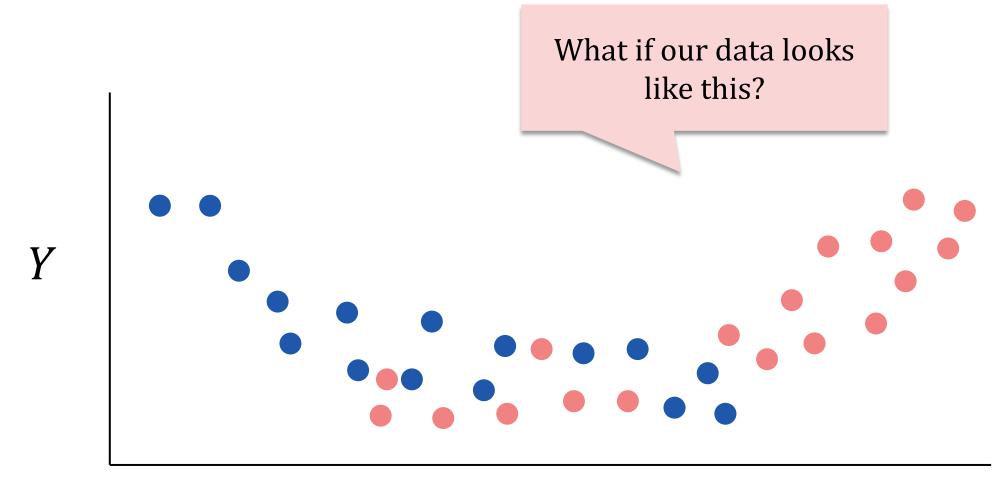
Which policies can we evaluate?



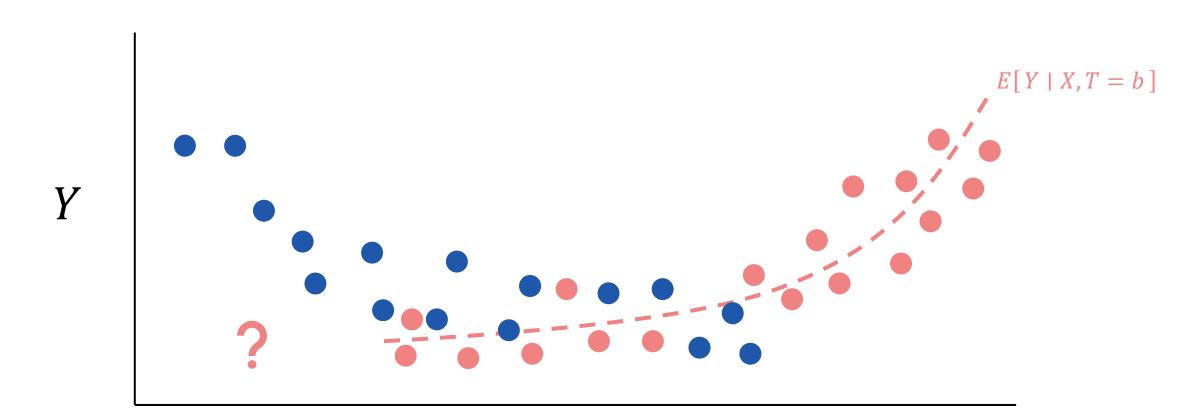
X

Which policies can we evaluate?

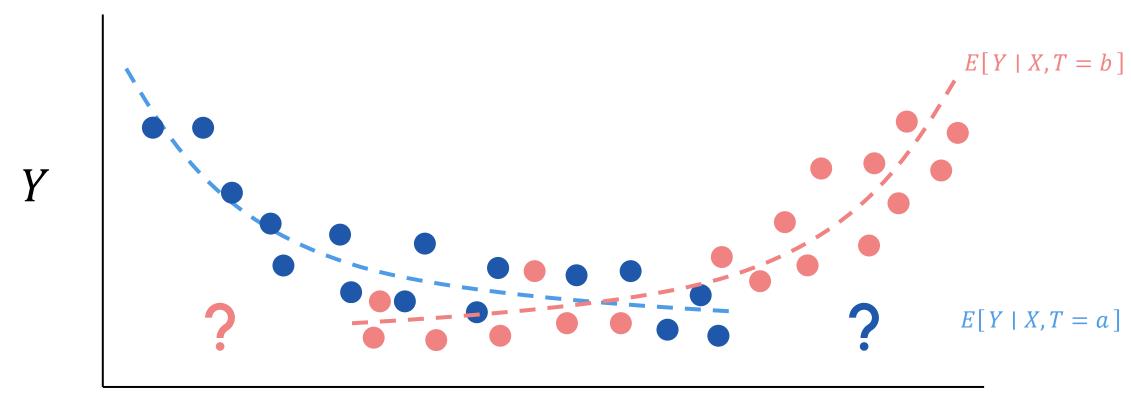
X

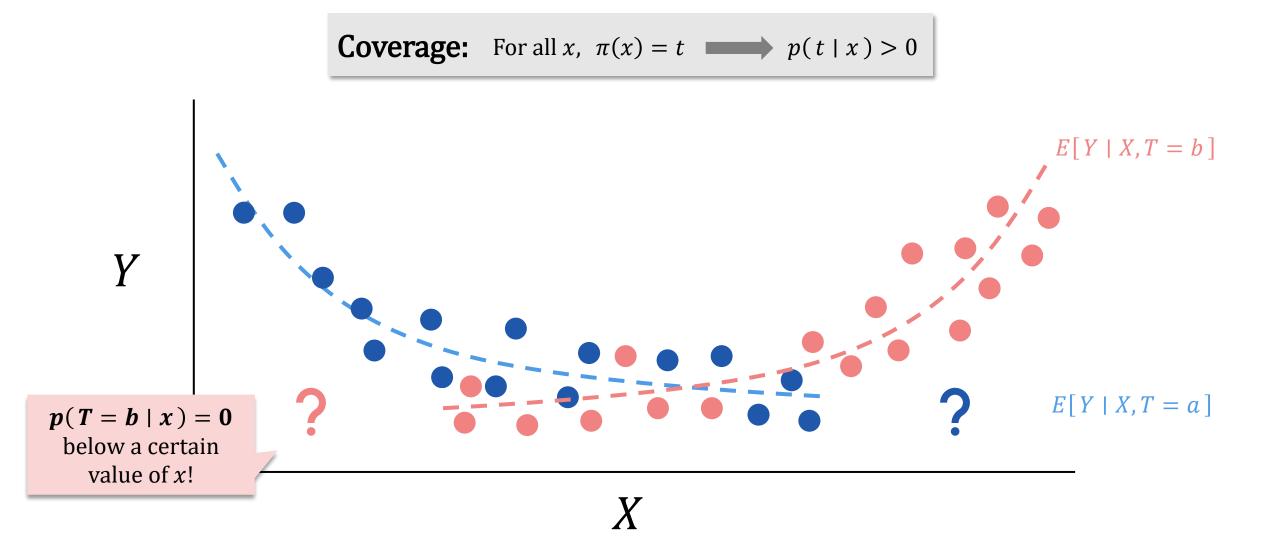


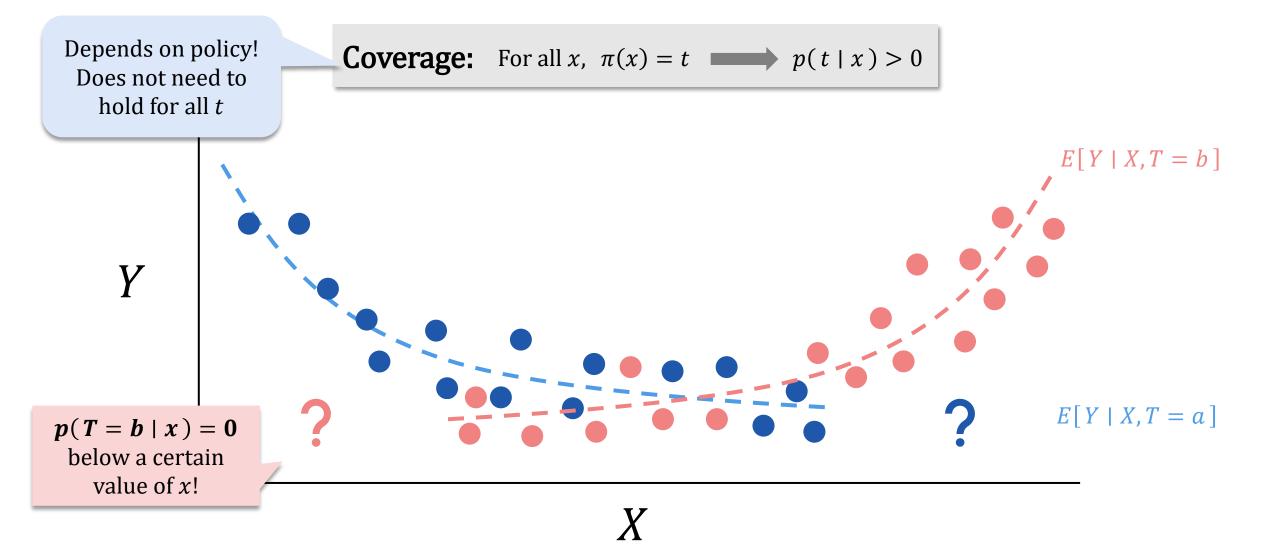
Which policies can we evaluate?

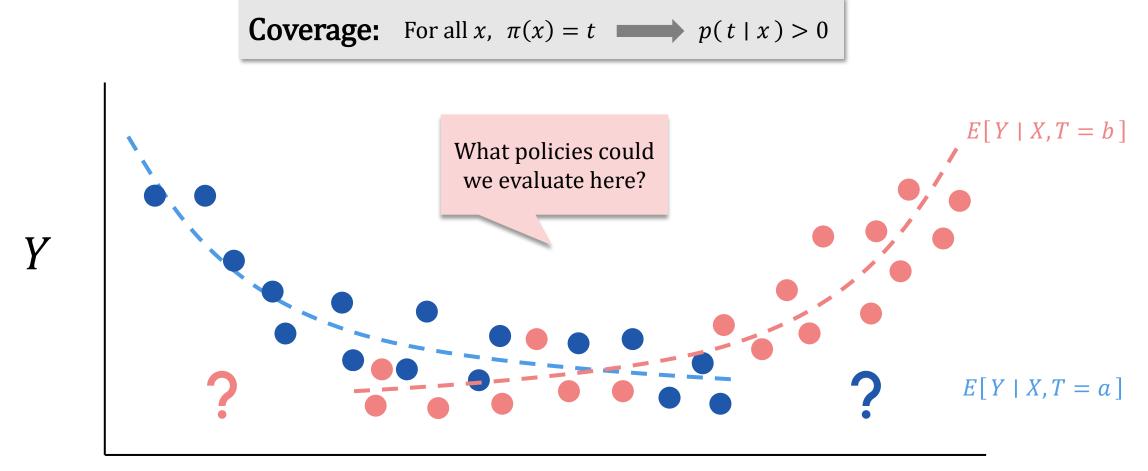


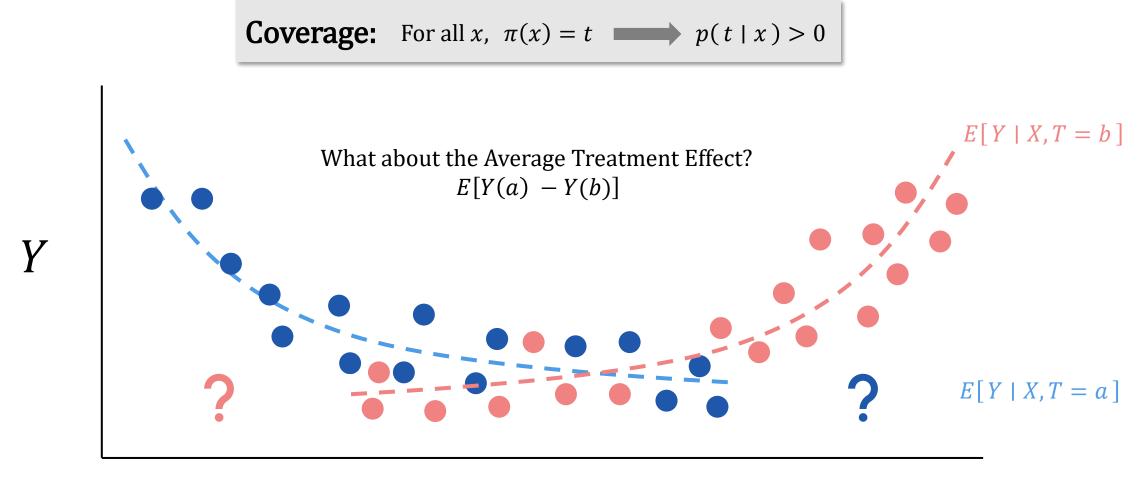
In order to estimate E[Y | X, T = b] in this region, we will have to **extrapolate**



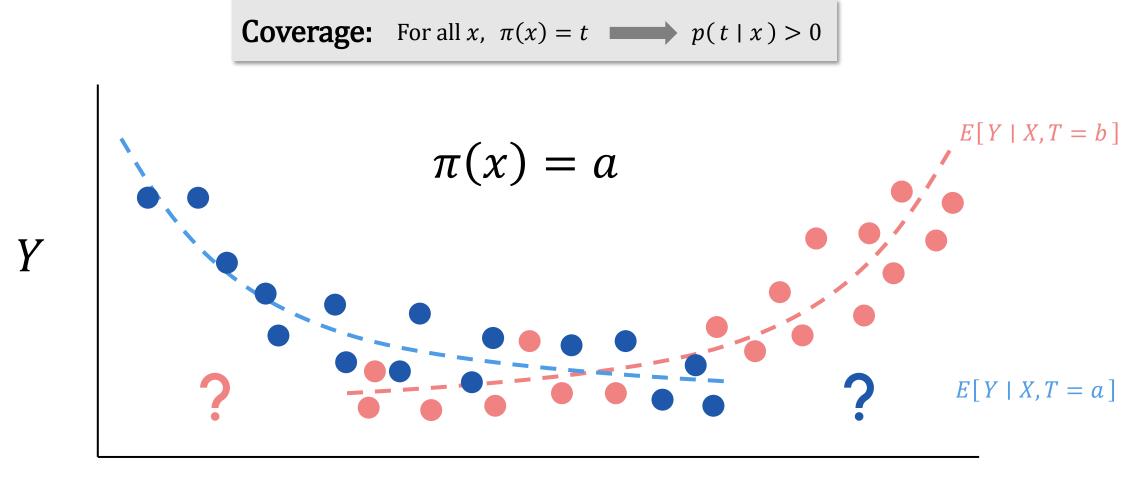




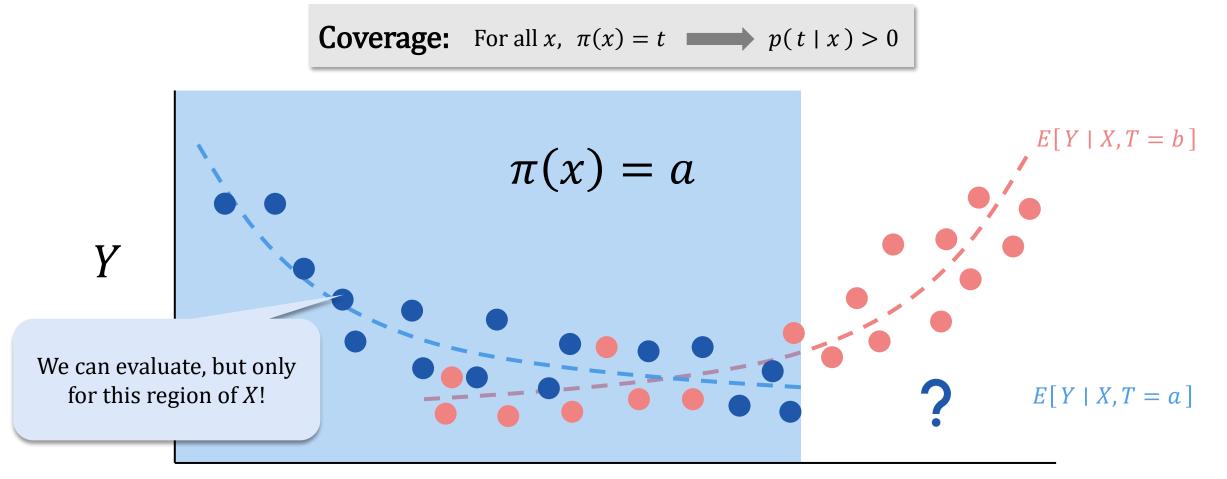




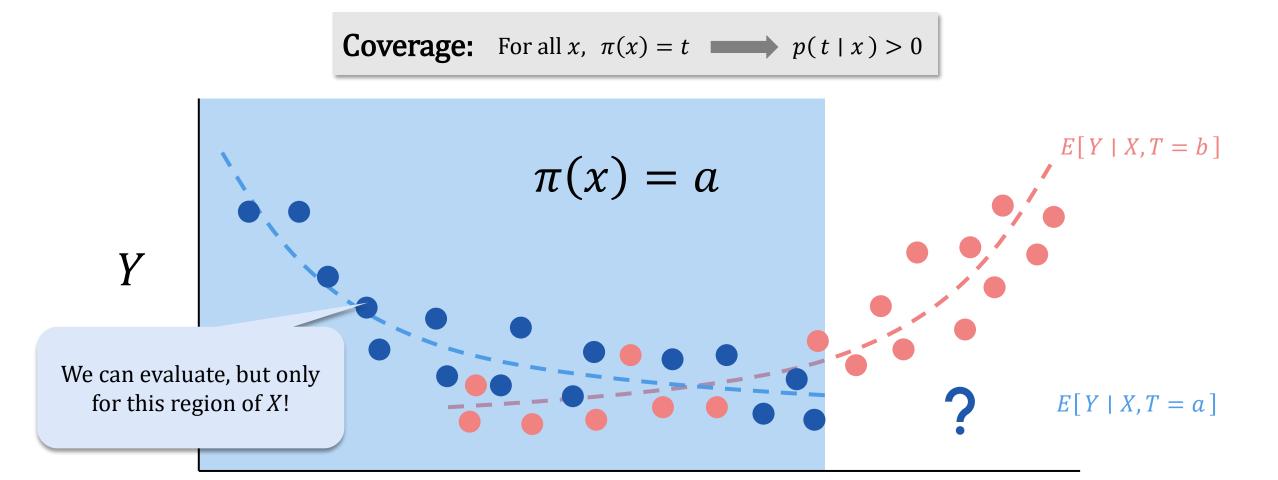
Where can we evaluate a fixed policy?



Where can we evaluate a fixed policy?



Where can we evaluate a fixed policy?



Characterization of Overlap in Observational Studies *AISTATS 2020* Oberst, M.*, Johansson, F.*, Wei, D.*, Gao, T., Brat, G., Sontag, D., & Varshney, K.

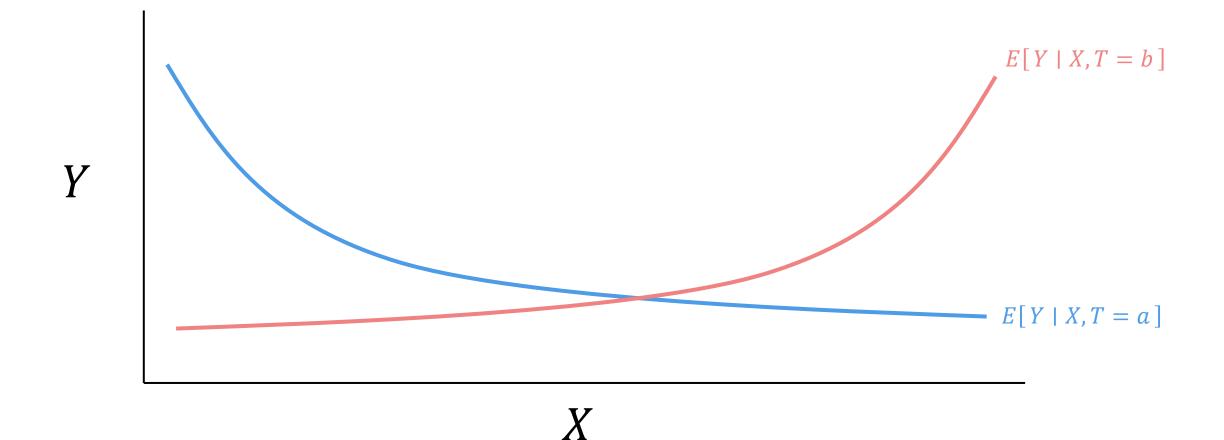
Goals

- By the end of this primer, you should understand...
 - What a **causal effect** is, and when we can infer it from observational data *"What is the effect of treatment vs. placebo?"*
 - How causal effect estimation is a special case of policy evaluation *"What would happen if I implemented a new set of guidelines?"*
 - How to use policy evaluation to **learn optimal policies** *"What is the optimal treatment strategy?"*

Learning Policies from Data

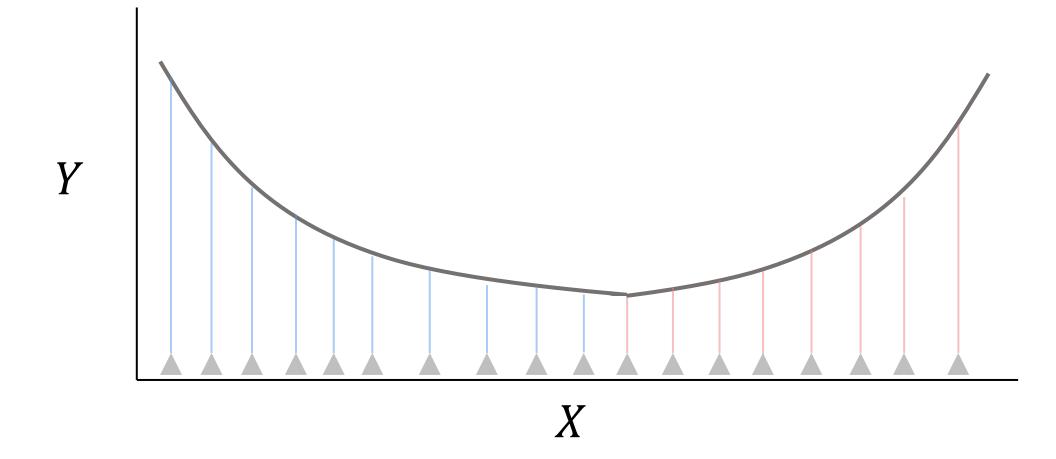
What is the optimal policy?

$$\mathbf{E}[Y(\pi(x))] = E_x[E[Y \mid X, T = \pi(x)]]$$



What is the optimal policy?

$$\mathbf{E}[Y(\pi(x))] = E_x[E[Y \mid X, T = \pi(x)]]$$



How to find the optimal policy?

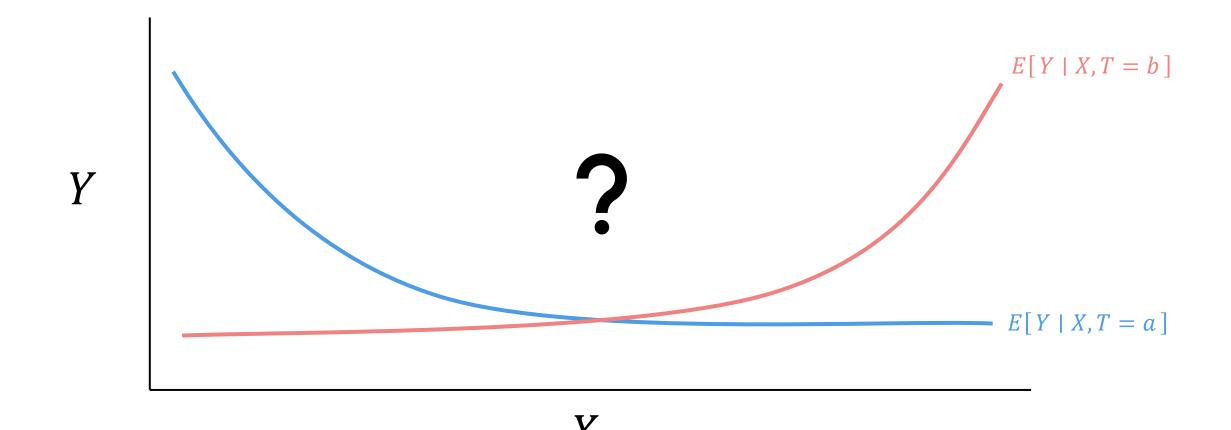
Option #1: Estimate outcomes for each action, choose the best one!

$$\pi(x) \coloneqq \operatorname{argmax}_{t \in T} f(x, t)$$

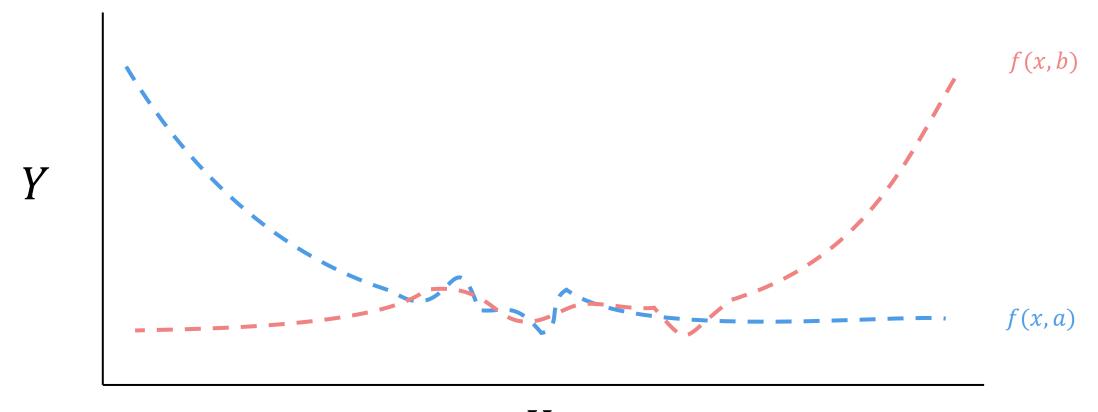
- "Indirect" method
- Requires that regression function be "correct"
- The resulting policy could also be quite complex

 $f(x,t) \approx E[Y \mid X = x, T = t]$

Indirect method may yield complex policies $\overline{\pi(x)} = \operatorname{argmax}_{t \in T} f(x, t)$



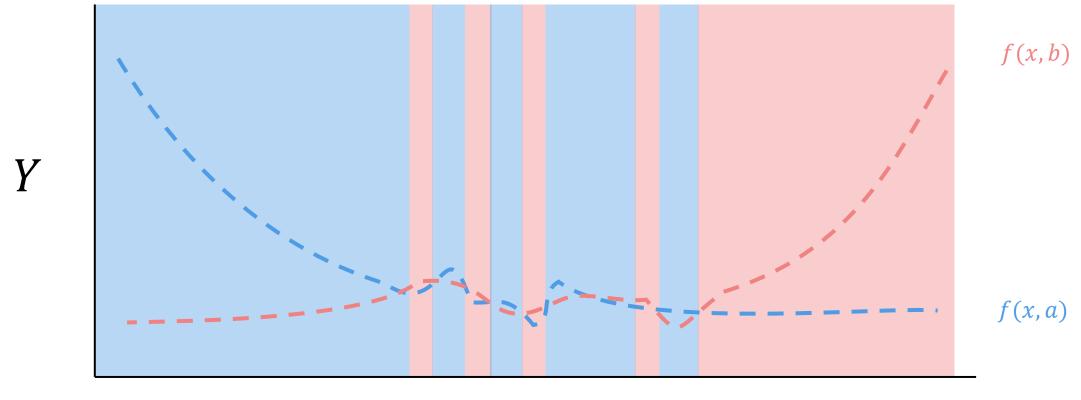
Indirect method may yield complex policies $\overline{\pi(x)} = \operatorname{argmax}_{t \in T} f(x, t)$



 $\pi(x) = b$

X

Indirect method may yield complex policies $\overline{\pi(x)} = \operatorname{argmax}_{t \in T} f(x, t)$



X

How to find the optimal policy?

Option #2: Directly solve for the best policy in a certain class

$$\pi^* = \operatorname{argmax}_{\pi \in \Pi} \widehat{E}[Y(\pi(x))]$$

Now we are **restricting** to some **policy class** Π (e.g., linear treatment rules)

How to find the optimal policy?

Option #2 ("Direct"): Solve for the best policy in a certain class

$$\pi^* = \operatorname{argmax}_{\pi \in \Pi} \frac{1}{n} \sum_{i=1}^{n} \sum_{a \in A} 1\{\pi(x_i) = a\} * \widehat{W}_a(i)$$

"Doubly Robust" Estimator

Now we are **restricting** to some **policy class** Π (e.g., linear treatment rules)

$$\widehat{W}_a(i) \coloneqq \frac{1\{t_i = a\}}{e(x_i, t_i)} (Y_i - f(x_i, a) + f(x_i, a))$$

Directly optimizing a policy

Option #2 ("Direct"): Solve for the best policy in a certain class

$$\pi^* = \operatorname{argmax}_{\pi \in \Pi} \frac{1}{n} \sum_{i=1}^{n} \sum_{a \in A} 1\{\pi(x_i) = a\} * \widehat{W}_a(i)$$

- We can optimize over simple (interpretable) policies, even if outcome / propensity models are very flexible and complex
- Conceptually straightforward to add other actions (e.g., deferral)

Not obvious how to optimize this! Why?

Policy Optimization as classification

$$\pi^* = \operatorname{argmax}_{\pi \in \Pi} \frac{1}{n} \sum_{i=1}^{n} \sum_{a \in A} 1\{\pi(x_i) = a\} * \widehat{W}_a(i)$$

Difficult optimization problem! Analogous to weighted 0-1 loss in classification.

Policy Optimization as classification

Use convex surrogate for indicator function

$$\pi^* = \operatorname{argmax}_{\pi \in \Pi} \frac{1}{n} \sum_{i=1}^{n} \sum_{a \in A} 1\{\pi(x_i) = a\} * \widehat{W}_a(i)$$

Convert to minimization

Goal: Reformulate optimization problem so that

- It is easier to optimize
- It has the same optimal solution

Redefine weights (e.g., ensure nonnegative) so that reformulated problem remains convex

Goals

- By the end of this primer, you should understand...
 - What a **causal effect** is, and when we can infer it from observational data *"What is the effect of treatment vs. placebo?"*
 - How **causal effect estimation** is a special case of **policy evaluation** *"What would happen if I implemented a new set of guidelines?"*
 - How to use policy evaluation to **learn optimal policies** *"What is the optimal treatment strategy?"*

Recommended Reading (Policy Learning)

[1] Y. Q. Zhao, E. B. Laber, Y. Ning, S. Saha, and B. E. Sands, *Efficient augmentation and relaxation learning* for individualized treatment rules using observational data, J. Mach. Learn. Res., vol. 20, pp. 1–23, 2019.

[2] X. Huang, Y. Goldberg, and J. Xu, **Multicategory individualized treatment regime using outcome weighted learning**, Biometrics, August 2018, pp. 1216–1227, 2019.

[3] S. Athey and S. Wager, **Policy Learning with Observational Data**, Econometrica (Forthcoming), 2020.

[4] N. Kallus, More Efficient Policy Learning via Optimal Retargeting, J. Am. Stat. Assoc., 2020.

Disclaimer: Selected set of (very) recent papers, but good place to find references to broader literature