

Regularizing towards Causal Invariance: Linear Models with Proxies

Mike Oberst MIT

Nikolaj Thams Univ. of Copenhagen

Jonas Peters Univ. of Copenhagen

David Sontag MIT

Y: Disease

X₁: Medical History **Y**: Disease

Examples: Income, distance to nearest clinic.

A: Access to healthcare

(Unobserved)

Examples: Income, distance to nearest clinic.

A: Access to healthcare

How do changes here (e.g., due to differences between hospitals) influence our predictive models?

Our contributions

Learn linear predictors that are **robust to plausible interventions** on unobserved variables, using **noisy proxies** at training time.

High-Level Overview

- Setup: Linear SCMs and Shift Interventions
- Background: Robustness to bounded shift in linear models
- Contributions:
 - Defining (and optimizing over) more flexible robustness sets
 - Recovering guarantees with noisy proxies

High-Level Overview

- Setup: Linear SCMs and Shift Interventions
- Background: Robustness to bounded shift in linear models
- Contributions:
 - Defining (and optimizing over) more flexible robustness sets
 - Recovering guarantees with noisy proxies

Assumptions: Linear structural causal model (SCM) over all observed and unobserved variables and one or more noisy proxies of A

Assumptions: Linear structural causal model (SCM) over all observed and unobserved variables and one or more noisy proxies of A

Any causal graph over X, Y, H is permitted, but A is an "anchor" with no causal parents.

$$\begin{pmatrix} X \\ Y \\ H \end{pmatrix} = B \begin{pmatrix} X \\ Y \\ H \end{pmatrix} + MA + \epsilon$$

Assumptions: Linear structural causal model (SCM) over all observed and unobserved variables and one or more noisy proxies of A

Any causal graph over X, Y, H is permitted, but A is an "anchor" with no causal parents.

$$\begin{pmatrix} X \\ Y \\ H \end{pmatrix} = B \begin{pmatrix} X \\ Y \\ H \end{pmatrix} + MA + \epsilon$$

Assumptions: Linear structural causal model (SCM) over all observed and unobserved variables and one or more noisy proxies of A

Goal: Robustness to Dataset Shift

Use noisy proxies (W, Z), only available at training time...

Goal: Robustness to Dataset Shift

Use noisy proxies (W, Z), only available at training time...

... to learn a model that **minimizes a worst-case loss** over interventions on A

$$\min \sup_{\nu \in C} \mathbb{E}_{do(A \coloneqq \nu)} [(Y - \gamma^{\mathsf{T}} X)^2]$$

High-Level Overview

- Setup: Linear SCMs and Shift Interventions
- Background: Robustness to bounded shift in linear models
- Contributions:
 - Defining (and optimizing over) more flexible robustness sets
 - Recovering guarantees with noisy proxies

Example: Intervention on Instrumental Variable (IV)

Linear functions with additive noise.

 $X = A + H + \epsilon_X$ $Y = X + 2H + \epsilon_Y$

Example: Intervention on Instrumental Variable (IV)

Linear functions with additive noise.

 $X = A + H + \epsilon_X$ $Y = X + 2H + \epsilon_Y$

Which linear predictor $(\gamma \cdot X)$ to use?

 $\gamma_{causal} = 1, \ \gamma_{OLS} \neq 1$

Example: Intervention on Instrumental Variable (IV)

Linear functions with additive noise.

 $X = A + H + \epsilon_X$ $Y = X + 2H + \epsilon_Y$

Which linear predictor $(\gamma \cdot X)$ to use?

 $\gamma_{causal} = 1, \ \gamma_{OLS} \neq 1$

Note: X, *Y* are both linear functions of A: $Y = (A + H + \epsilon_x) + 2H + \epsilon_y$

Example: Intervention on Instrumental Variable (IV)

Linear functions with additive noise. $X = A + H + \epsilon_X$ $Y = X + 2H + \epsilon_Y$ Which linear predictor $(\gamma \cdot X)$ to use?

 $\gamma_{causal} = 1, \ \gamma_{OLS} \neq 1$

Residual is a linear function of A...

$$Y - \gamma \cdot X = (1 - \gamma)A + \cdots$$

Remainder does not depend on A

Causal effect yields **invariant** performance under **arbitrary** interventions on A

Plot: MSE of different predictors under interventions on *A*

• Ordinary least-squares (OLS)

Intervention: Set A to a fixed value (similar plot holds for shift in the mean of A)

$A \rightarrow X \rightarrow Y$

Robustness to bounded interventions

Plot: MSE of different predictors under interventions on *A*

- Ordinary least-squares (OLS)
- Causal effect (IV)

Intervention: Set A to a fixed value (similar plot holds for shift in the mean of A)

Plot: MSE of different predictors under interventions on *A*

- Ordinary least-squares (OLS)
- Causal effect (IV)
- Anchor Regression (AR, $\lambda = 6$)

Н

[1] Rothenhäusler, D., Meinshausen, N., Bühlmann, P., and Peters, J. Anchor regression: Heterogeneous data meet causality. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 83(2):215–246, 2021. **Intervention:** Set A to a fixed value (similar plot holds for shift in the mean of A)

Plot: MSE of different predictors under interventions on *A*

- Ordinary least-squares (OLS)
- Causal effect (IV)
- Anchor Regression (AR, $\lambda = 6$)

Н

[1] Rothenhäusler, D., Meinshausen, N., Bühlmann, P., and Peters, J. Anchor regression: Heterogeneous data meet causality. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 83(2):215–246, 2021. **Note:** Anchor Regression has optimal worstcase risk for interventions in this range [1]

$R(\gamma) \coloneqq Y - \gamma^{\mathsf{T}} X$

Anchor Regression

Idea: Trade off between invariance & in-distribution accuracy

$$\ell_{AR}(X, Y, A; \gamma, \lambda) = \ell_{LS}(X, Y; \gamma) + \lambda \cdot \ell_{PLS}(X, Y, A; \gamma)$$
$$\mathbb{E}[R(\gamma)^{2}] \qquad \mathbb{E}[(\mathbb{E}[R(\gamma) \mid A])^{2}]$$

$R(\gamma) \coloneqq Y - \gamma^{\top} X$

Anchor Regression

^[1] Rothenhäusler, D., Meinshausen, N., Bühlmann, P., and Peters, J. Anchor regression: Heterogeneous data meet causality. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 83(2):215–246, 2021.

High-Level Overview

- Setup: Linear SCMs and Shift Interventions
- Background: Robustness to bounded shift in linear models
- Contributions:
 - Defining (and optimizing over) more flexible robustness sets
 - Recovering guarantees with noisy proxies

Our contributions

Learn linear predictors that are **robust to plausible interventions** on unobserved variables, using **noisy proxies** at training time.

Robustness to targeted interventions

Problem: What if we have more specific knowledge of the shift?

E.g., moving to a hospital with a lower level of income, but not higher.

Robustness to targeted interventions

Problem: What if we have more specific knowledge of the shift?

E.g., moving to a hospital with a lower level of income, but not higher.

Robustness to targeted interventions

Problem: What if we have more specific knowledge of the shift?

E.g., moving to a hospital with a lower level of income, but not higher.

Contribution: We show how to adapt the guarantees of Anchor Regression to a broader class of robustness sets

Η

Our contributions

Learn linear predictors that are **robust to plausible interventions** on unobserved variables, using **noisy proxies** at training time.

Problem: What happens when A is only observed with noise?

2

Intervention on A

4

Problem: What happens when A is only observed with noise?

6.0

Predictor

H

Η

Problem: What happens when A is only observed with noise?

Contribution: We demonstrate that proxy noise reduces robustness with a single proxy

Problem: What happens when A is only observed with noise?

Η

Problem: What happens when A is only observed with noise?

Contribution: We demonstrate that two proxies can be used to recover the original guarantees, as if A were observed

Our contributions

Optimize worst-case loss over interventions on *A* in a targeted robustness set.

Learn linear predictors that are **robust to plausible interventions** on unobserved variables, using **noisy proxies** at training time.

Two proxies suffice to recover guarantees as if *A* were observed.

Our contributions

Optimize worst-case loss over interventions on *A* in a targeted robustness set.

Learn linear predictors that are **robust to plausible interventions** on unobserved variables, using **noisy proxies** at training time.

Two proxies suffice to recover guarantees as if *A* were observed.

Aside: Considering multiple dimensions

*A*₁: Distance to closest clinic

A₂: Income

*A*₂: Income

^[1] Rothenhäusler, D., Meinshausen, N., Bühlmann, P., and Peters, J. Anchor regression: Heterogeneous data meet causality. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 83(2):215–246, 2021.

[1] Rothenhäusler, D., Meinshausen, N., Bühlmann, P., and Peters, J. Anchor regression: Heterogeneous data meet causality. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 83(2):215–246, 2021.

$R(\gamma) \coloneqq Y - \gamma^\top X$

Targeted Anchor Regression

Anchor Regression

 $\ell_{LS}(X,Y;\gamma) + \lambda \cdot \ell_{PLS}(X,Y,A;\gamma)$

$R(\gamma) \coloneqq Y - \gamma^\top X$

Targeted Anchor Regression

Anchor Regression

 $\ell_{LS}(X,Y;\gamma) + \lambda \cdot b_{\gamma}^{\top} \mathbb{E}[AA^{\top}]b_{\gamma}$

$$b_{\gamma}^{\mathsf{T}} \coloneqq \mathbb{E}[R(\gamma)A^{\mathsf{T}}] (\mathbb{E}[AA^{\mathsf{T}}])^{-1}$$

Intuition: Causal effect (on the residual) of a shift in A

$R(\gamma) \coloneqq Y - \gamma^\top X$

Targeted Anchor Regression

Anchor Regression

 $\ell_{LS}(X,Y;\gamma) + \lambda \cdot b_{\gamma}^{\top} \mathbb{E}[AA^{\top}]b_{\gamma}$

$$b_{\gamma}^{\top} \coloneqq \mathbb{E}[R(\gamma)A^{\top}] (\mathbb{E}[AA^{\top}])^{-1}$$

Intuition: Causal effect (on the residual) of a shift in A

Targeted Anchor Regression

 $\ell_{LS}(X,Y;\gamma) + b_{\gamma}^{\top}(\Sigma_{\nu} - \mathbb{E}[AA^{\top}])b_{\gamma} + (b_{\gamma}^{\top}\mu_{\nu} - \alpha)^{2}$

Controls the **shape** of the robustness set

Controls the **center** of the robustness set

Our contributions

Optimize worst-case loss over interventions on *A* in a **targeted** robustness set.

Learn linear predictors that are **robust to plausible interventions** on unobserved variables, using **noisy proxies** at training time.

Two proxies suffice to recover guarantees as if *A* were observed.

Assumption: Noisy Proxies

Assumptions: Linear structural causal model (SCM) over all observed and unobserved variables and **one or more noisy proxies of A**

Proxies are linear functions of A with independent additive noise.

Example: Self-reported data on income, distance to closest clinic, etc.

$$W \coloneqq \beta_W A + \epsilon_W$$

$$Z := \beta_Z A + \epsilon_Z$$

When **A is observed directly**, Anchor Regression minimizes the worst-case over

 $|\nu| < \sqrt{1 + \lambda}$

interventions on A up to $|\nu| < \sqrt{1 + \lambda}$

When **A** is observed directly, Anchor Regression minimizes the worst-case over $|\nu| < \sqrt{1 + \lambda}$

Using **a single noisy proxy W** in place of A, this robustness set becomes

$$|\nu| < \sqrt{1 + \lambda \cdot \rho_{w}}$$

When **A** is observed directly, Anchor Regression minimizes the worst-case over $|\nu| < \sqrt{1 + \lambda}$

Using **a single noisy proxy W** in place of A, this robustness set becomes

$$|\nu| < \sqrt{1 + \lambda \cdot \rho_{w}}$$

Where ρ_w is the **signal-to-variance ratio**

$$\rho_{w} = \frac{\beta_{W}^{2}}{\beta_{W}^{2} + \mathbb{E}[\epsilon_{w}^{2}]} < 1$$

 $W \coloneqq \beta_W A + \epsilon_W$

When **A** is observed directly, Anchor Regression minimizes the worst-case over $|\nu| < \sqrt{1 + \lambda}$

Using **a single noisy proxy W** in place of A, this robustness set becomes

$$|\nu| < \sqrt{1 + \lambda \cdot \rho_w}$$

Where ρ_w is the **signal-to-variance ratio**

$$\rho_{W} = \frac{\beta_{W}^{2}}{\beta_{W}^{2} + \mathbb{E}[\epsilon_{W}^{2}]} < 1$$

 $W \coloneqq \beta_W A + \epsilon_W$

When **A** is observed directly, Anchor Regression minimizes the worst-case over $|\nu| < \sqrt{1 + \lambda}$

Using **two noisy proxies** of A, we can recover the original guarantee $|\nu| < \sqrt{1 + \lambda}$

 $Z \coloneqq \beta_Z A + \epsilon_Z$ $W \coloneqq \beta_W A + \epsilon_W$

Requirement: β_Z , β_W are non-zero!

Impact of proxy noise in higher dimensions

Anchor Regression [1] optimizes a worst-case loss over interventions in a rescaling of the covariance of A

 $\sup_{\nu \in C_A(\lambda)} \mathbb{E}_{do(A \coloneqq \nu)} [(Y - \gamma^{\top} X)^2]$

Theorem 1 (Informal)

Given a <u>single</u> noisy proxy *W* of *A*, the robustness set is provably reduced, and this reduction is not identifiable.

*A*₂: Income

[1] Rothenhäusler, D., Meinshausen, N., Bühlmann, P., and Peters, J. Anchor regression: Heterogeneous data meet causality. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 83(2):215–246, 2021.

Impact of proxy noise in higher dimensions

*A*₂: Income

Anchor Regression [1] optimizes a worst-case loss over interventions in a rescaling of the covariance of A

$$\sup_{\nu \in C_A(\lambda)} \mathbb{E}_{do(A \coloneqq \nu)} [(Y - \gamma^{\mathsf{T}} X)^2]$$

Theorem 1 (Informal)
Given a single noisy proxy W of A, the robustness set is provably reduced, and this reduction is not identifiable.

Theorem 2 (Informal) Given <u>two</u> noisy proxies of *A*, one can recover the original robustness set, using a modified objective

 $R(\gamma) \coloneqq Y - \gamma^\top X$

Anchor Regression

 $\ell_{LS}(X,Y;\gamma) + \lambda \cdot \ell_{PLS}(X,Y,A;\gamma)$

 $R(\gamma) \coloneqq Y - \gamma^{\top} X$

Anchor Regression

 $\ell_{LS}(X,Y;\gamma) + \lambda \cdot \ell_{PLS}(X,Y,A;\gamma)$

Cross-Proxy Anchor Regression

 $\ell_{LS}(X,Y;\gamma) + \lambda \cdot \ell_{\times}(X,Y,W,Z;\gamma)$

 $W \coloneqq \beta_W A + \epsilon_W$

 $Z := \beta_Z A + \epsilon_Z$

 $R(\gamma) \coloneqq Y - \gamma^{\top} X$

Anchor Regression

 $\ell_{LS}(X,Y;\gamma) + \lambda \cdot \mathbb{E}[R(\gamma)A^{\top}]\mathbb{E}[AA^{\top}]^{-1}\mathbb{E}[AR(\gamma)^{\top}]$

Cross-Proxy Anchor Regression

 $\ell_{LS}(X,Y;\gamma) + \lambda \cdot \mathbb{E}[R(\gamma)W^{\top}]\mathbb{E}[ZW^{\top}]^{-1}\mathbb{E}[ZR(\gamma)^{\top}]$

 $W \coloneqq \beta_W A + \epsilon_W$

 $Z := \beta_Z A + \epsilon_Z$

 $R(\gamma) \coloneqq Y - \gamma^{\top} X$

Anchor Regression

$\ell_{LS}(X,Y;\gamma) + \lambda \cdot \mathbb{E}[R(\gamma)A^{\top}]\mathbb{E}[AA^{\top}]^{-1}\mathbb{E}[AR(\gamma)^{\top}]$

Cross-Proxy Anchor Regression

Equivalent to the fully-observed term, assuming β_W , β_Z full rank

 $\ell_{LS}(X,Y;\gamma) + \lambda \cdot \mathbb{E}[R(\gamma)W^{\top}]\mathbb{E}[ZW^{\top}]^{-1}\mathbb{E}[ZR(\gamma)^{\top}]$

 $W \coloneqq \beta_W A + \epsilon_W$ $Z \coloneqq \beta_Z A + \epsilon_Z$

We also extend this idea to Targeted AR, allowing for identification of more general worst-case

Task	Predict pollution (PM2.5) based on weather-related variables. Data for five cities in China.
Setup	 We use Temperature (Celsius) as our anchor variable, given seasonal effects. Train/Validate: Train on 3 seasons, using leave-one-season-out CV to tune. Evaluation: Predict on a held-out season, evaluate MSE.

Task	Predict pollution (PM2.5) based on weather-related variables. Data for five cities in China.	Table 1. Mean: A where $\lambda > 0$. # V lower MSE than to OLS across en
	We use Temperature (Celsius) as our	Estimator
	anchor variable, given seasonal effects.	OLS
Setup	Train/Validate: Train on 3 seasons,	
	using leave-one-season-out CV to tune.	AR (Temp
	Evaluation: Predict on a held-out	
	season, evaluate MSE.	
		TAR (Tem
	1) Improves on OLS on average across	
	evaluations, with limited downside.	
Conclusion	2) Duomo a ciere hourte dout europe aurona	r
	2) Proxy noise nurts, but cross-proxy	
	variants help mitigate the effect.	

Estimator	Mean	# Win	Best	Worst	
OLS	0.537				
AR (TempC)	0.531				
(10mp 0)	0.001				
TAR (TempC) 0.525					
Targeted AR uses knowledge of mean/variance of TempC in held-out					

Task	Predict pollution (PM2.5) based on weather-related variables. Data for five cities in China.	Table 1. Mean where $\lambda > 0.4$ lower MSE that to OLS across
	We use Temperature (Celsius) as our	Estimator
Setup	anchor variable, given seasonal effects.	OLS (Ter
	Train/Validate: Train on 3 seasons,	OLS (Ten OLS + Es
	using leave-one-season-out CV to tune.	AR (Tem
	Evaluation: Predict on a held-out	
	season, evaluate MSE.	
	1) Improves on OLS on average across	TAR (Te
	evaluations, with limited downside.	
Conclusion	2) Proxy noise hurts, but cross-proxy	
	variants help mitigate the effect.	

Table 1. Mean: Average MSE (lower is better) over 9 scenarios where $\lambda > 0$. # Win: Number of scenarios where the estimator has lower MSE than OLS. Best (Worst): Smallest (Largest) difference to OLS across environments, where lower is better.

Estimator	Mean	# Win	Best	Worst
OLS OLS (TempC) OLS + Est_Bias	0.537 0.536 0.569			
AR (TempC)	0.531			

TAR (TempC) 0.525

Task	Predict pollution (PM2.5) based on weather-related variables. Data for five cities in China.	Table 1.where λ lower Mto OLS a
	We use Temperature (Celsius) as our anchor variable, given seasonal effects.	Estir OLS OLS
Setup	Train/Validate: Train on 3 seasons, using leave-one-season-out CV to tune.	OLS AR
	Evaluation: Predict on a held-out season, evaluate MSE.	
	1) Improves on OLS on average across evaluations, with limited downside.	1A
Conclusion	2) Proxy noise hurts, but cross-proxy variants help mitigate the effect.	

Estimator	Mean	# Win	Best	Worst
OLS OLS (TempC) OLS + Est. Bias	0.537 0.536 0.569	5 4	-0.028 -0.072	0.026 0.150
AR (TempC)	0.531	6	-0.041	0.006

	TAR (TempC)	0.525	8	-0.061	0.001
--	-------------	-------	---	--------	-------

	Task	Predict pollution (PM2.5) based on weather-related variables. Data for five cities in China.	Table 1. Mean: where $\lambda > 0$. # lower MSE than to OLS across en
		We use Temperature (Celsius) as our	Estimator
		anchor variable, given seasonal effects.	OLS
	Setup	Train/Validate: Train on 3 seasons,	OLS (Temp OLS + Est.
		using leave-one-season-out CV to tune.	AR (Temp
		Evaluation: Predict on a held-out	PAR (W)
		season, evaluate MSE.	xPAR (W, 2
	Conclusion	1) Improves on OLS on average across evaluations, with limited downside.	TAR (Tem PTAR (W) xPTAR (W,
	COLICIUSION	2) Proxy noise hurts, but cross-proxy	
		variants help mitigate the effect.	

Estimator	Mean	# Win	Best	Worst
OLS	0.537	5	0.029	0.026
OLS (TempC) OLS + Est. Bias	0.530	3 4	-0.028	0.020
AR (TempC) PAR (W) xPAR (W, Z)	0.531	6	-0.041	0.006
TAR (TempC) PTAR (W) xPTAR (W, Z)	0.525	8	-0.061	0.001

Task	Predict pollution (PM2.5) based on weather-related variables. Data for five cities in China.	Table 1. Mean: Aver where $\lambda > 0$. # Win: lower MSE than OLS to OLS across enviro
	We use Temperature (Celsius) as our	Estimator
	anchor variable, given seasonal effects.	OLS
Setup	Train/Validate: Train on 3 seasons,	OLS (TempC) OLS + Est. Bia
-	using leave-one-season-out CV to tune.	AR (TempC)
	Evaluation: Predict on a held-out season, evaluate MSE.	PAR (W) xPAR (W, Z)
_		TAR (TempC)
	1) Improves on OLS on average across	PTAR (W)
Conclusion	evaluations, with limited downside.	xPTAR (W, Z)
Gonciusion	2) Proxy noise hurts, but cross-proxy	
	variants help mitigate the effect.	

Estimator	Mean	# Win	Best	Worst
OLS	0.537	~	0.020	0.026
OLS (TempC) $OLS + Est_Bias$	0.536	5 4	-0.028	0.026
	0.509	+	-0.072	0.150
PAR (TempC) PAR (W) xPAR (W, Z)	0.531	6	-0.041	0.006
TAR (TempC)	0.525	8	-0.061	0.001
PTAR (W)	0.529	8	-0.038	0.001
xPTAR (W, Z)	0.526	7	-0.059	0.001

Task	Predict pollution (PM2.5) based on weather-related variables. Data for five cities in China.	
Setup	We use Temperature (Celsius) as our anchor variable, given seasonal effects.	
	Train/Validate: Train on 3 seasons, using leave-one-season-out CV to tune.	
	Evaluation: Predict on a held-out season, evaluate MSE.	
Conclusion	1) Improves on OLS on average across evaluations, with limited downside.	
	 Proxy noise hurts, but cross-proxy variants help mitigate the effect. 	

Estimator	Mean	# Win	Best	Worst
OLS	0.537			
OLS (TempC)	0.536	5	-0.028	0.026
OLS + Est. Bias	0.569	4	-0.072	0.150
AR (TempC)	0.531	6	-0.041	0.006
PAR (W)	0.531	6	-0.037	0.006
xPAR (W, Z)	0.531	6	-0.039	0.007
TAR (TempC)	0.525	8	-0.061	0.001
PTAR (W)	0.529	8	-0.038	0.001
xPTAR (W, Z)	0.526	7	-0.059	0.001
Conclusions

Learn linear predictors that are robust to plausible interventions on <i>unobserved variables, using **noisy proxies** at training time.

Conclusions

Learn linear predictors that are robust to plausible interventions on <i>unobserved variables, using **noisy proxies** *at training time.*

Broader goal: Constructing domain-specific robustness guarantees

- Specifying relevant (unobserved) causal factors via proxies
- Focusing on plausible shifts in these underlying factors

Conclusions

Learn linear predictors that are robust to plausible interventions on <i>unobserved variables, using **noisy proxies** *at training time.*

Broader goal: Constructing domain-specific robustness guarantees

- Specifying relevant (unobserved) causal factors via proxies
- Focusing on plausible shifts in these underlying factors

Open Directions: Extending to general (nonlinear) causal models.