
Towards Rigorously Tested & Reliable Machine Learning
for Health

By Michael Karl Oberst

B.A., Harvard University (2012)
S.M., Massachusetts Institute of Technology (2019)

Submitted to the Department of Electrical Engineering and Computer Science in
Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2023

© 2023 Michael Karl Oberst. All rights reserved.
The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free license

to exercise any and all rights under copyright, including to reproduce, preserve, distribute

and publicly display copies of the thesis, or release the thesis under an open-access license.

Authored by: Michael Karl Oberst
Department of Electrical Engineering and Computer Science
June 7, 2023

Certified by: David Sontag
Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by: Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students



2



Towards Rigorously Tested & Reliable Machine Learning for Health

by

Michael Karl Oberst

Submitted to the Department of Electrical Engineering and Computer Science
on June 7th, 2023, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

When can we rely on machine learning in high-risk domains like healthcare? In the
long-term, we want machine learning systems to be as reliable as any FDA-approved
medication or diagnostic test. Building reliable models is complicated by the need
for causal reasoning and robust performance. To support decision-making, we want
to draw causal conclusions about the impact of model recommendations (e.g., will
recommending a particular drug lead to better patient outcomes?). Moreover, we want
our models to perform well across different hospitals and patient populations, including
those that differ from the hospitals / populations seen during model development.

These objectives run into limitations of what our data can tell us without further
assumptions. For instance, we only observe outcomes for the treatments that were
actually prescribed to patients, not all possible treatments. Similarly, we do not
observe performance on every conceivable hospital where a model might be deployed,
but only on the (typically much more limited) data we have access to.

In this thesis, I approach these challenges using tools from causality and statistics,
incorporating external knowledge into the process of both model validation and
design. External knowledge can come from a variety of sources, including human
experts (e.g., clinicians) or gold-standard data (e.g., from randomized trials). First,
I introduce methods for assessing and improving the credibility of causal inference,
including methods to help domain experts“sanity check” the causal reasoning of models
for decision-making, identify under-represented populations in causal analyses, and
incorporate limited experimental data to improve the credibility of causal conclusions.
Second, I introduce tools for building robust predictive models by incorporating domain
knowledge of plausible variation across environments: Both estimating worst-case
predictive performance (e.g., accuracy) of models under domain-specific changes in
the data generating process, as well as optimizing models to obtain optimal worst-case
performance.

Thesis Supervisor: David Sontag
Title: Professor of Electrical Engineering and Computer Science
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4-3 Coverage probabilities of confidence intervals shown as a function of the
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5-3 Test performance under interventions 𝑑𝑜(𝐴 := (𝜈1, 𝜈2)) which give rise

to different test distributions over 𝑋 and 𝑌 . Each dot corresponds

to a different intervention (i.e., test distribution on 𝑋,𝑌 ), and the

color gives the resulting mean squared prediction error (MSPE). (Far

Left) OLS performs well for interventions in the set 𝐶OLS (solid circle),

corresponding to the training covariance of 𝐴. However, it performs

poorly under interventions far from this region (e.g., top left). (Middle

Left) Anchor Regression (AR) minimizes the worst-case loss over inter-

ventions on 𝐴 within the region 𝐶𝐴(𝜆1) (cf., (5.8)), a re-scaling of 𝐶OLS.
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If we choose some 𝜆2 > 𝜆1 such that 𝐶𝐴(𝜆1) ⊂ 𝐶𝑊 (𝜆2), we enforce a
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mean squared prediction error in this distribution. Cross marks the
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5-5 Mean squared prediction error (MSPE) under interventions 𝑑𝑜(𝐴 := 𝜈)

for estimators PAR and xPAR. We display population losses for the

population parameters as dashed lines, and median empirical MSPE

when fit from data as solid lines, with shaded regions covering the 25%

to 75% quantiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

5-6 Estimates of worst-case mean squared prediction error (MSPE) over a

robustness set 𝐶. PAR is applied assuming that the signal-to-variance

ratio is 0.4, which gives an estimate of the worst-case MSPE over 𝐶

(orange). Green line shows actual worst-case MSPE over 𝐶 at different

underlying signal-to-variance ratios. . . . . . . . . . . . . . . . . . . . 230

5-7 (a) SCM with 𝐴1, 𝐴2 (unobserved), target 𝑌 and predictor variables
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6-3 The blue line gives the (unobserved) cross-entropy loss under parametric

shifts, plotted with respect to the parameter 𝛿0 (a) and the resulting

change in the marginal laboratory testing rate (b). We also provide the

quadratic approximation (orange line), estimated using validation data,

and the predicted worst-case shift (red star) for |𝛿0| < 2 (region in grey).252

6-4 Causal graph over attributes in the synthetic CelebA dataset, where

lightning bolts indicate changes in mechanisms. All of these attributes

are causal parents of the image 𝑋 (not shown here), which is generated

by a GAN conditioned on these attributes. . . . . . . . . . . . . . . . 253

6-5 (a) Model accuracy at randomly drawn shifts. (b) Difference in accuracy

in the worst-case shifts identified by Taylor and importance sampling

approaches. The Taylor method identifies a more adversarial shift than

importance sampling in 96% of simulations (green). . . . . . . . . . . 255

7-1 An image 𝑋 is a function of binary attributes 𝑍 and label 𝑌 . Some

components of 𝑍 cause 𝑌 , while others are caused by 𝑌 , and all of their

distributions are subject to change. . . . . . . . . . . . . . . . . . . . 262

7-2 𝑆 denotes “smiling”, and 𝐴′ := (𝑌, 𝑍) ∖ 𝑆 denotes all other attributes,

including the label. (a) In this graph, a change in the causal mechanisms

of 𝑆 is reflected in a change in 𝑃 (𝑆 | 𝐴′), but 𝑃 (𝑋 | 𝐴′, 𝑆) is unchanged.

(b) In this graph, a change in the same causal mechanism (of 𝑆) results

in a change in 𝑃 (𝑋 | 𝐴′, 𝑆). Here, 𝐶 is a confounder denoting context

(e.g., “on the red carpet”). Here, a change in the causal mechanism of

smiling implies a change in the conditional distribution of images given

all attributes 𝑃 (𝑋 | 𝐴′, 𝑆). . . . . . . . . . . . . . . . . . . . . . . . . 263

34
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on each 𝑍𝑖 can be estimated, even though we cannot apply our existing

approach due to the unmeasured confounder 𝑈 . Note that this requires

that 𝑈 has no direct effect on 𝑋, which is a limitation. . . . . . . . . 278

7-11 We do not necessarily expect that models can have invariant performance

under interventions on 𝑍, even in this anti-causal setting: Interventions

on 𝑍 do not influence 𝑌 , but may influence 𝑋. In general, there may

not exist a model with invariant performance across interventions on

𝑍. Indeed, some values of 𝑍 could make the learning problem more

difficult, if e.g., 𝑍 encodes some level of noise / blur in the image. . . 279

8-1 Comparing the machine learning development process (bottom) to the

drug development process (top). The focus of this thesis has been

primarily on the “pre-clinical” stage of assessing and improving the

reliability of models prior to deployment. . . . . . . . . . . . . . . . . 284

A-1 Boolean rules on disjunctive normal form (DNF). We highlight data

points represented by their activations, 𝑎1·, 𝑎2· of rules from the set 𝒦

of all possible rules. 𝒞 is the region described by the rule set and 𝑟

indicators for the rules. . . . . . . . . . . . . . . . . . . . . . . . . . . 288

A-2 Results from the Jobs datasets for OverRule approximations of different

base estimators, sweeping 𝜆0, 𝜆1. AUC (i.e., balanced accuracy) is

measured with respect to the experimental indicator. The dotted line

‘Propensity (base)’ refers to the logistic regression base estimator, ‘k-NN

(base)‘ refers to the k-NN base estimator, and ‘SVM (base)‘ refers to the

one-class SVM. The colored points refer to performance of OverRule

using the respective base estimator, for different values of 𝜆0, 𝜆1 . . . 305

36



A-3 OverRule description of the complement of the overlap between post-
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D-5 Feasible sets, worst-case directions, and worst-case solutions for a (1−𝛼)
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D-10(Left) Causal graph for Example 6.1, where the variables are 𝑌 ∈ {0, 1}

for the label (Disease), 𝐴 ∈ R for Age, 𝑂 ∈ {0, 1} for whether a labora-

tory test is ordered (Test Order), and 𝐿 ∈ R for the lab result (Test

Result), if available. (Right) Using the same generative model as in Ap-

pendix D.1, we contrast the performance of the full model 𝑓(𝐴,𝑂,𝐿)

and a model 𝑓(𝐴) that only uses age, across distributions which differ

in testing rates according to 𝑃𝛿(𝑂 = 1 | 𝐴, 𝑌 ) = sigmoid(𝜂(𝐴, 𝑌 ) + 𝛿).
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the worst-case loss under shifts |𝛿| ≤ 1.5 (corresponding to marginal

testing rates in the grey region), we can observe that the worst-case

loss of 𝑓(𝐴,𝑂,𝐿) is lower than that of 𝑓(𝐴). . . . . . . . . . . . . . . 472
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E.4 Blond Hair Classification: List of all attributes in the assumed causal

order, with indications for which variables (i.e., conditional distributions)

are allowed to shift. All variables are binary: We exclude the attributes

“Black Hair”, “Brown Hair”, and “Grey Hair”, using the attribute “Blond

Hair” as a single binary attribute. We similarly exclude “Wavy Hair”,

treating “Straight Hair” as a binary attribute. We exclude the attribute

“Attractive” from this list. . . . . . . . . . . . . . . . . . . . . . . . . 493
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Chapter 1

Introduction

1.1 Motivation and context

What is the role of data in improving healthcare? What role does machine learning,

statistics, and routinely-collected data have to play in decision-making for healthcare?

There is an increasingly large amount of data available from routine clinical practice,

often referred to as “observational” data, to distinguish it from “experimental” data

collected in clinical trials. For instance, in the United States, since passage of the

Health Information Technology for Economic and Clinical Health (HITECH) Act in

2009, there has been a dramatic rise in the availability of electronic healthcare data

via the adoption of electronic health records (Adler-Milstein and Jha, 2017).

Data collected during routine care has the potential to personalize decision-making

(Kanjilal et al., 2020), help triage patients (Cummings et al., 2021), alert clinicians to

patients that are at risk of deterioration (Singh et al., 2021; Adams et al., 2022), help

automate routine tasks in radiology like quantifying cardiac function (He et al., 2023),

and so on. Observational data is also an important complement to data collected

during clinical trials, which is often restricted to narrow populations. For instance,

Fehrenbacher et al. (2009) found, in a sample of patients with non-small-cell lung

cancer (NSCLC) at Kaiser Permanente, that only 34% of patients would have been

49



eligible to participate in the clinical trials that inform current treatment guidelines.

Similarly, Travers et al. (2007) found that, across 17 major clinical trials used to inform

treatment for asthma, a median of 6% of individuals currently being treated for asthma

would have qualified for inclusion. Against this backdrop, the U.S. Food and Drug

Administration (FDA) has sought to create pathways for the use of observational data

in regulatory approvals (FDA, 2018). For instance, Prograf, a drug designed to prevent

organ rejection in transplant patients, was approved for use in lung transplantation

based on data from outside of a randomized trial (FDA, 2021), having been initially

approved for other transplants based on data from clinical trials.

In this thesis, we consider the use of historical data to generate predictions that inform

decision-making, whether those predictions are personalized to individuals (e.g., “this

patient is likely to need intensive care”) or given in broad terms (e.g., “this drug

is generally effective for treating a given disease”). The focus of this thesis is on

methods for making those predictions more reliable. For our purposes, we use the term

“reliability” to capture the idea that predictions should be accurate in the practical

contexts in which they are used.

Examples of unreliable predictions in healthcare To illustrate what we mean by

“reliability”, it is useful to consider examples of unreliable predictions. Today, machine

learning and data-driven systems for decision-making are actively used in healthcare,

but can fail in unanticipated ways.

As a cautionary example, consider the Epic Sepsis Model, a proprietary prediction

model used in hundreds of hospitals to detect sepsis. Sepsis is a deadly syndrome,

triggered by infection, that contributes to the death of hundreds of thousands of

patients per year (CDC, 2022). A recent study found that this model had far lower

performance in practice (0.63 AUC1) than originally found by the company (0.76–

0.83 AUC), and an alarmingly high rate of false positives (Wong et al., 2021). The

1AUC (Area Under the receiver operating characteristic Curve) is a common measure of accuracy,
which describes the probability that the model will correctly distinguish between a randomly chosen
positive and negative example.
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company now recommends that the model be trained on hospital-specific data, and that

individual hospitals should conduct their own analyses of performance (Ross, 2022).

Meanwhile, the Food and Drug Administration (FDA) recently released guidance

indicating that similar models may be subject to increased regulatory scrutiny (FDA,

2022). In part, this under-performance was due to an over-reliance on correlations

in training data that were not present during deployment, such as indicators that

clinicians had already begun treatment of the condition (Ross, 2021).

In medical imaging, Oakden-Rayner et al. (2020) consider the task of classifying

pneumothorax (a collapsed lung) from chest X-rays, and observe on that on a commonly-

used dataset, existing metrics of performance are misleading. While the models they

examine achieve an AUC of 0.87 overall, this seemingly superb performance masks the

fact that 80% of pneumothorax cases in the evaluation dataset contain chest drains,

a treatment for the condition. Evaluating the model on these cases alone yields an

AUC of 0.94, while evaluating the model on untreated cases (a more realistic setting

in a real deployment) yields a far lower AUC of 0.77.

More recently, attempts to apply machine learning during the COVID-19 crisis have

met with mixed results. Sun et al. (2022) describe the development and validation of

a model that uses chest X-rays to diagnose COVID-19, training on a combination of

publicly available datasets and data from the University of Minnesota health system.

Their model achieves superb performance (AUC of 0.96) on publicly available datasets,

but an AUC of 0.8 on data from the University of Minnesota health system. Meanwhile,

when attempting to use the model in other locations, they observe substantial drops in

performance, with an AUC of 0.72 and 0.66 at the health systems of Indiana University

and Emory University respectively.

In another notable example of using data to inform decision-making, during early

March 2020, a small-scale observational study of patients in France suggested that

an anti-malarial drug, hydroxychloroquine, was an effective treatment for COVID-19,

particularly in combination with azithromycin, an antibiotic (Gautret et al., 2020).

At a time when the medical community was scrambling to find effective treatments
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for COVID-19, this study contributed to a substantial increase in the use of the drug,

as well as an Emergency Use Authorization (EUA) by the FDA in late March 2020

(Saag, 2020). Shortly thereafter, large-scale randomized trials such as the Recovery

Trial (RECOVERY Collaborative Group et al., 2020) demonstrated no benefit of the

drug for hospitalized patients, and larger observational studies established evidence for

the poor safety profile of this particular combination of treatments in certain patients

(Lane et al., 2020). The FDA withdrew the EUA in June 2020 (FDA, 2020) citing in

part the new data provided by large-scale randomized trials.

Understanding why predictions can be unreliable In all of the examples above,

the relevant predictions were simply not accurate in practice, despite retrospective

analyses that initially suggested promising results. Determining whether or not our

predictions are reliable is more complex than it might first appear, because the context

in which a prediction is used often differs from the data that we have available to us

when developing our predictions.

For instance, we may have data from patients treated according to current practice,

but we are interested in making predictions regarding what would happen to patients

if they were treated differently. Similarly, the data available to train a prediction

model may differ from the data seen during practical deployment: In the sepsis and

medical imaging examples above, for instance, the training data contained examples

where patients had already begun treatment, which are not realistically available

during deployment. We provide simple mathematical examples to build more technical

intuition for these points in Section 1.2.

In general, the usefulness and reliability of our predictions are based on assumptions

which relate our historical data to the context in which we expect our predictions to be

used. A typical example of an assumption in machine learning, violated in the settings

above, is that data is independent and identically distributed (iid), i.e., that our future

data is drawn from the same distribution as our training data. The core thrust of this

thesis is that we need to be more careful about our assumptions, more rigorous in
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checking them where possible, and otherwise attempt to develop predictions whose

reliability is more robust to violations of our assumptions.

1. Developing reliable predictions (our focus): Before deployment, how do
we assess and improve the reliability of our predictions?

• How can we detect violations of the assumptions that are required
for our predictions to be reliable? (Chapters 2 and 3)

• How can we develop predictions that are reliable under weaker
assumptions? (Chapters 4 and 5)

• How can we assess the sensitivity of our predictions to violations of
assumptions? (Chapters 6 and 7)

2. Deployment-time safeguards: How do we prevent inaccurate predictions
from causing harm?

3. Ongoing monitoring: How do we detect when our predictions become less
accurate over time?

4. Adaptation: How do we adapt our predictions to new contexts or patient
populations with limited data?

Figure 1-1: A (necessarily incomplete) list of broader questions in developing safe
and effective machine learning systems. The focus of this thesis is primarily on the
first question. Here we use the term “predictions” broadly to include any data-driven
recommendation that influences decision-making. Whether those recommendations
are disseminated through academic publications (e.g., observational studies that make
claims regarding treatment effectiveness) or though computer systems at the point-of-
care (e.g., early-detection alerts embedded in the medical record), we want to ensure
that our predictions are accurate.

Our focus in this thesis: How do we make reliable predictions? These broad

challenges raise a number of technical questions, some of which are summarized

in Figure 1-1. Our focus in this thesis is on proactively assessing and improving

the reliability of our predictions before we deploy them broadly, as opposed to e.g.,

monitoring models in deployment or otherwise developing safeguards to mitigate the

impact of unreliable predictions.
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Aside: Broader considerations in developing reliable predictions Machine learning

and statistical techniques are increasingly used to inform decision-making in sensitive

areas, from healthcare to criminal justice and loan approvals. In these contexts, there

is a wealth of literature on the potential pitfalls of using machine learning to inform

decisions. Without hoping to cover all of the relevant considerations here, we sketch

some broader questions of reliability, to set context for our contributions.

Relevant considerations go beyond whether or not our predictions are accurate in

the first place. For instance, consider the question of predicting whether or not a

particular drug or treatment is effective: In addition to considering the accuracy of

these predictions, we might be concerned with issues of fairness or discrimination —

for instance, are our predictions systematically wrong for individuals of certain racial

groups? Moreover, if our predictions directly inform decisions (e.g., suppose that an

insurance company denies coverage due to predicted ineffectiveness), do individuals

who are impacted have access to appropriate recourse to both understand why those

decisions were made, and contest them if they are based on faulty information?

When constructing our predictions, are we ensuring that the privacy of individuals is

maintained? We refer interested readers to the recently released Blueprint for an AI

Bill of Rights, released by the White House Office of Science Technology and Policy

(OSTP, 2022) for more context along these lines.

Nonetheless, in this thesis we will focus on the narrower question of whether or not our

predictions are accurate in the first place, as a necessary (but not sufficient) condition

for the effective use of predictions in decision-making.

1.2 Background: Causality and Dataset Shift

On a technical level, many of our contributions in this thesis revolve around related

ideas from causal inference (Pearl, 2009; Imbens and Rubin, 2015; Hernan and Robbins,

2019; Peters et al., 2017) and dataset shift (Quiñonero-Candela et al., 2009). We

begin by introducing two stylized examples in Section 1.2.1 of using data to develop
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predictions of patient outcomes under treatment and to develop predictions of whether

or not a patient has a particular disease. In both cases, our predictions are reliable

if future data is similar to our historical data. In Section 1.2.2 we demonstrate how

things can go wrong if this assumption is violated, and in Section 1.2.3 we describe

alternative assumptions, based on knowledge of the causal data generating process,

that allow us to make more reliable predictions in each setting.

1.2.1 Simple motivating examples

To start building more technical intuition for the contributions of this thesis, we will

start by introducing some basic notation and stylized examples. Let 𝑋 denote the

variables that we use to make predictions, let 𝑌 be the variable we are trying to

predict (e.g., an outcome under treatment, or a whether or not a patient has some

disease) where 𝑓(𝑋) is some function takes 𝑋 as input, and returns a prediction 𝑌 .

A typical assumption made in standard machine learning tasks is that the distribution

of 𝑋, 𝑌 is the same between our training distribution 𝑃tr(𝑋, 𝑌 ), from which we sample

the data used to train 𝑓(𝑋), and the test distribution 𝑃te(𝑋, 𝑌 ), from which we sample

the data used to evaluate 𝑓(𝑋).

Assumption 1.1. The training and test distributions are the same, i.e.,

𝑃tr(𝑋, 𝑌 ) = 𝑃te(𝑋, 𝑌 ) (1.1)

When Assumption 1.1 holds, the performance (e.g., accuracy) of our predictions on

the training distribution will be (roughly speaking) similar to the performance of our

predictions on the test distribution. When Assumption 1.1 does not hold, such that

the test data is distributed differently than the training data, this scenario is often

referred to as dataset shift or distribution shift (Quiñonero-Candela et al., 2009). We

introduce two stylized motivating examples here, to illustrate where Assumption 1.1

breaks down, and the ways in which considering the causal data generating process

can help us to make more reliable predictions.
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Example 1.1 (Assessing treatment effectiveness). Suppose that we are trying to assess

whether or not some treatment is effective at increasing survival rates among patients.

If we could predict what would happen for future patients, if they were to receive the

treatment, then we could use such predictions to guide treatment decisions. In Table 1.1

we lay out some illustrative data, where we observe that in historical data, treated

patients have worse outcomes than patients who go untreated.

Table 1.1: Data for Example 1.1, where patients in the control group have higher
survival rates than patients in the treated group.

Rate of Survival % of Population

Control 74% 50%
Treatment 36% 50%

Example 1.2 (Diagnosing disease). Suppose that we are interested in predicting the

likelihood that patients have a given disease, where we only have access to a single

laboratory test, which is not ordered for all patients. In Table 1.2 we lay out some

illustrative data, noting a strong correlation between disease prevalence and whether

or not a laboratory test has been ordered.2 Among patients without laboratory tests,

the prevalence of disease is 30%, while the overall prevalence of disease is 55%.

Table 1.2: Distribution of outcomes among patients who do or do not have laboratory
tests ordered, in Example 1.2, along with the proportion of patients who have laboratory
tests ordered. The overall prevalence of disease is 55%.

Rate of Disease % of Population

Test ordered 80% 50%
No test ordered 30% 50%

If we view both examples as prediction tasks, a naive prediction model would rely

entirely on these observed correlations in data — an estimated likelihood of survival

under treatment of 36% in Example 1.1, and an estimated likelihood of having disease

2It has been observed empirically in medical data that the presence or absence of a laboratory
test is itself highly predictive of disease (Agniel et al., 2018), and we credit Subbaswamy et al. (2019)
for first introducing us to this type of example in causal graphical form.
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(if no lab test is ordered) of 30% in Example 1.1.3

In both of these examples, if future data resembles our historical data, then there is

no problem from a prediction perspective. But for different reasons, in both cases,

these predictions might not be reliable, due to violations of this assumption.

1.2.2 Complications due to violations of assumptions

We now describe some simple complications that could arise in both examples, high-

lighting the importance of understanding the underlying data generating process.

Example 1.1 (Continued). Survival rates in the control group are 74%, versus 36% in

the treatment group, for an overall survival rate of 55%. If we treat these numbers as

predictions of survival rates if we were to treat all patients the same way, what might

happen? In this example, if clinicians stopped treating patients entirely, we would

see the survival rate drop from 55% to 50%. If clinicians choose to treat all patients,

we would see the survival rate increase from 55% to 60%. Our predicted chance of

survival without treatment (74%) and with treatment (36%) was misleading, but why?

Table 1.3: Data for Example 1.1, where patients in the control group have higher
survival rates than patients in the treated group. When we stratify by patient complexity
(e.g., how sick the patient is to start with), we observe that the treatment is associated
with higher survival rates in both groups of patients. This phenomenon is often referred
to as “Simpson’s Paradox” in introductions to causal inference (see Section 6.1 of
Pearl (2009)), and used to illustrate the fact that correlation is not necessarily equal
to causation.

Overall Complicated Normal
% Survival % Survival % of pop. % Survival % of pop.

Control 74% 20% 5% 80% 45%
Treatment 36% 30% 45% 90% 5%

In Table 1.3, we break out performance by patient complexity (𝐶), and observe

that within each group of patients, the treatment (𝑇 ) improves survival rates (𝑌 ).

3For simplicity, we ignore the task of prediction when a lab test is available, as this would require
us to specify the distribution of e.g., lab values given disease state. Focusing on predictions without
a laboratory test is sufficient to illustrate our point here.
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Pt. Complexity (𝐶)

Survival (𝑌 )Treatment (𝑇 )

Figure 1-2: Causal graph for Example 1.1. A causal graph lays out the causal
relationships between variables: In this example, patient complexity influences the
decision to provide treatment, as sicker patients are more likely to be treated. Similarly,
patient complexity influences the outcome of survival, as more complex patients have
lower survival rates. In this example, patient complexity is a “confounder”, a variable
we must adjust for in order to draw valid causal conclusions about the influence of
treatment on survival rates.

In Figure 1-2 we provide an illustrative causal graph which describes the underlying

data-generating process, and reveals the problem: In our training distribution, the

probability of treatment 𝑃tr(𝑇 | 𝐶) depends on patient complexity, where more

complex patients are more likely to receive treatment. If we alter the treatment policy

(e.g., by treating all patients the same way), this change would imply a violation

of Assumption 1.1, the assumption that 𝑃tr = 𝑃te.

Example 1.2 (Continued). Disease prevalence in the group of patients who do not

receive laboratory tests is 30%. If we use this statistic as our predicted probability of

disease for these patients going forward, what might happen? Suppose we apply our

predictions in a different hospital with the same distribution of patients, and observe

that our predictions are now systematically miss-calibrated: Patients who do not

receive laboratory tests now have a 55% prevalence of disease. We show the data from

the second hypothetical hospital in Table 1.4. The mix of patients is the same in both

hospitals (i.e., the overall disease rate is the same), so what might have happened?

We show the corresponding causal graph Figure 1-3, which illustrates the problem.

The difference between the two hospitals is that they have different laboratory testing

policies. In the first, the probability of ordering a test 𝑃tr(𝑂 | 𝑌 ) depends on disease

(e.g., due to symptoms of disease), while in the second, laboratory tests are ordered

randomly. As a result, the distributions differ, violating Assumption 1.1.
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Table 1.4: Data for Example 1.2, where we imagine deploying our predictions in a new
hospital with the same prevalence of disease (55%) but where patients are randomly
selected to receive laboratory tests.

Original Hospital New Hospital
% Disease % of pop. % Disease % of pop.

Test ordered 80% 50% 55% 50%
No test ordered 30% 50% 55% 50%

Disease (𝑌 )

Lab Order (𝑂) Lab Result (𝐿)

Figure 1-3: Causal graph for Example 1.2. The choice to order a laboratory test
is correlated with whether or not someone has disease, perhaps due to unrecorded
symptoms. Patients who receive laboratory tests have a higher pre-test probability of
having disease (see Table 1.2).

Notably, this is not the only way in which these hospitals could differ in their testing

policies. A particularly adversarial change would be for clinicians to only order tests

for healthy patients, and never order tests for sick patients, in which case the “correct”

prediction would be 100% likelihood of disease for those not tested.

1.2.3 Using causal knowledge to develop more reliable conclusions

In both examples, knowledge of the causal data generating process, e.g., the causal

graphs given in Figures 1-2 and 1-3, can be used to help us develop more reliable

predictions. However, knowledge of the causal data generating process is itself an

assumption: In both cases, we replace our assumption that 𝑃tr = 𝑃te with a more

realistic assumption on the process that generates the data.

A central aim of causal reasoning is to provide answers to “what if” questions, where

understanding the causal data generating process allows us to reason about how

different real-world scenarios would imply different distributions over the data: For

instance, how outcomes would change under different treatment policies in Example 1.1,
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or how disease rates would change for untested patients in Example 1.2.

Example 1.1 (Continued). Suppose that the causal graph in Figure 1-2 is valid, e.g.,

there are no other “confounding” variables that influence both the treatment decision

and the outcome. Under this graph, we can estimate the average outcome if we were

to treat all patients by using do-calculus to construct an adjusted estimate (Pearl,

2009)

E[𝑌 | 𝑑𝑜(𝑇 = 1)] =
∑︁
𝑐

E[𝑌 | 𝑇 = 1, 𝐶 = 𝑐]𝑃 (𝐶 = 𝑐) (1.2)

Example 1.2 (Continued). In Example 1.2, our primary goal is not to choose a

treatment 𝑇 , but merely to predict the outcome 𝑌 with high accuracy. However, the

failure of Assumption 1.1 means that we cannot simply try to minimize error on the

training distribution as a route to minimizing error on the test distribution. However,

we can use knowledge of the causal data generating process to conclude that changes in

clinical practice would be reflected in changes to the conditional distribution 𝑃 (𝑂 | 𝑌 ),

keeping constant the other factors. For instance, if Figure 1-2 holds, and if we knew

the laboratory testing policy at a new hospital 𝑃te(𝑂 | 𝑌 ), then we could estimate the

prevalence of disease in the untested population using a simple adjustment

E𝑡𝑒[𝑌 | 𝑂 = 0] =
𝑃te(𝑂 = 0 | 𝑌 = 1)𝑃tr(𝑌 = 1)∑︀
𝑦 𝑃te(𝑂 = 0 | 𝑌 = 𝑦)𝑃tr(𝑌 = 𝑦)

(1.3)

However, this adjustment requires us to know the laboratory testing policy at a new

location. When this policy is unknown, we may prefer to develop a model whose

performance is “robust” under different possible policies.

Conclusion: In this thesis, we distinguish between improving the reliability of causal

inference, and improving the robustness of prediction models. In both cases, un-

derstanding the data generating process will be essential, and adopting a causal

perspective gives us tools to do so across both types of problems. However, the partic-

ular problems that we address will vary subtly across the two types of applications.

When considering causal questions, our focus will be more on detecting violations of

our (causal) assumptions and developing predictions that are reliable under weaker
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assumptions (the first and second question in Figure 1-1). When considering prediction

problems, we focus on how causal frameworks can be used to develop prediction models

that have reliable performance even when dataset shift occurs (and Assumption 1.1

fails to hold) and assess the sensitivity of our prediction models to plausible changes

in distribution (the second and third question in Figure 1-1).

1.3 Structure and overview of this thesis

In this thesis, we attempt to provide a partial answer to the question:

How can we attempt to rigorously stress-test our models, and the conclusions

we draw from them? For models and conclusions that do not pass these tests,

what can we do to make them more robust?

We approach this task in two parts, first focusing on improving the reliability of

causal conclusions, and then focusing on improving the reliability and robustness of

prediction models. Several chapters in this thesis first appeared as published papers

in conferences, though this thesis does not cover all of the work that I’ve done during

my PhD. In Table 1.5 we give an overview of the papers included in this thesis, and

the chapters that correspond to those papers.
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Table 1.5: Publications and preprints written during my PhD, and their appearance
(or lack thereof) in this thesis. Co-first-authorship denoted by *.

Publication Venue Inclusion in Thesis

(Oberst and Sontag, 2019) ICML 2019 Chapter 2
(Oberst et al., 2020) AISTATS 2020 Chapter 3
(Hussain et al., 2022)* NeurIPS 2022 Chapter 4
(Oberst et al., 2021a) ICML 2021 Chapter 5
(Thams et al., 2022)* NeurIPS 2022 Chapter 6

(Hussain et al., 2023) AISTATS 2023 Not included
(Oberst et al., 2022) Preprint, presented at ACIC 2022 Not included
(Lim et al., 2021)* NeurIPS 2021 Not included
(Ji et al., 2021)* AMIA Informatics Summit 2021 Not included
(Boominathan et al., 2020) KDD 2020 Not included
(Kanjilal et al., 2020) Science Translational Medicine 2020 Not included

1.4 Part I: Reliable causal inference and policy evaluation

1.4.1 Overview of our perspective

Learning and evaluating new treatment policies from retrospective (or “observational”)

data requires causal assumptions, such as full observation of confounding factors.

These assumptions typically form the core way that “domain knowledge” is injected

into the process of causal reasoning, in a process known as identification, shown

in Figure 1-4. The reliability of our conclusions depends fundamentally on whether or

not these (typically untestable) assumptions hold in practice.

In this part of the thesis, we introduce methods for attempting to find flaws in causal

models, by incorporating other forms of domain knowledge outside of standard causal

assumptions.

In Chapter 2, previously published as our Masters thesis (Oberst, 2019), we introduce

a method for helping clinicians review and contest the causal claims of models for

sequential decision-making. We demonstrate the utility of this approach for finding

flaws in published work on sepsis treatment recommendation. However, this approach

is necessarily exploratory and hypothesis-generating in nature. In Chapter 3 and Chap-
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Observational Data

Causal Query

𝐸𝑑𝑜(𝑇=𝑡) 𝑌 𝐸 𝐸 𝑌 𝑋, 𝑇 = 𝑡

Statistical Query
Causal 
Assumptions

𝑋

𝑇 𝑌

Patient Features

Treatment Outcome

Figure 1-4: The typical process of performing causal inference: Starting from a causal
query (e.g., “what would the average outcome be if all patients were treated?”), a set
of causal assumptions (e.g., on the causal relationships between variables, expressed as
a causal graph) allows for translation of this causal query into a statistical query that
can be estimated from observational data. The reliability of our conclusions depends
in large part on whether or not these causal assumptions hold in practice, but these
assumptions are not typically testable. In this part of the thesis, we ask “what else can
we do to sanity-check our conclusions”?

ter 4 we provide two alternative perspectives on searching for flaws: In Chapter 3 we

give a method, using interpretable boolean rule sets, for characterizing violations of one

of the few testable assumptions in causal inference, the assumption of overlap between

treated and control populations. In Chapter 4, we give a method for incorporating

experimental data (e.g., from a randomized trial), which yields valid conclusions under

less stringent assumptions, targeting scenarios where experimental data does not cover

the population of interest. This scenario commonly occurs when considering off-label

use of drugs, or when attempting to generalize the results of randomized trials to

populations not originally eligible for the trial.

1.4.2 Chapter 2: Counterfactual Policy Introspection

How should clinicians evaluate the claim that a new treatment policy will improve

outcomes? In this chapter, we develop a technique to help clinicians validate probabilis-
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Inspection of counterfactual claims

Figure: Patient trajectory during ICU stay

Treatment 
decisions

Vital Signs 
(selected)

End of trajectory, dies within 90 daysObserved trajectory

End of trajectory (discharge), 90-day survivalCounterfactual trajectory

“John Smith” 

Summary from clinical notes for this patient:

• Admitted after collapse at home

• Stage IIIA lung cancer, leading to lung 
infection & accumulation of fluids

• Died in the hospital ~2 weeks after 
admission

Is this counterfactual claim reasonable, 
given what we know about the patient?

Dr. Sanjat Kanjilal

Figure 1-5: Counterfactual Policy Introspection. Here we show a real patient from the
MIMIC-III dataset (Johnson et al., 2016), evaluating the counterfactual claims of a
probabilistic model developed in (Komorowski et al., 2018), highlighting a patient who
the model claims would have lived under an alternative treatment policy. Extracting
these kind of counterfactual claims is a primary technical contribution of Oberst and
Sontag (2019). In black is the actual trajectory of this patient, and in light blue we
see a counterfactual claim for how the vital signs (and eventual outcome) would have
differed under alternative treatment, taking into account what actually happened to this
patient. These claims are not clinically plausible, suggesting flaws in both the original
model, and the model-based claim that 95% of patients would survive under the new
policy. These counterfactual claims, under mild conditions, represent an attribution
of the claimed improvement in outcomes to specific historical patients like this one.

tic causal models used in sequential decision-making problems (e.g., in model-based

reinforcement learning for sepsis treatment). Our approach decomposes aggregate

claims made by such models (e.g., “80% of hypothetical future patients would survive

under the new policy”) into counterfactual claims on specific historical patients (e.g.,

“patient X would have survived under the new policy”).

To uncover flaws in the clinical reasoning of the model, these counterfactuals can be

reviewed by clinicians alongside the full medical record for those patients. An example

is shown in Figure 1-4. We use this approach to uncover flaws in a highly-cited paper,

the “AI Clinician” (Komorowski et al., 2018): Alongside an infectious disease clinician
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from Mass General Brigham, we review patients who died in reality, but who the model

claimed would have lived under its recommended policy. Implausible counterfactual

claims were often clearly attributable to confounding factors not included in the

model (e.g., terminal cancer), but present in clinical notes. Such insights are directly

relevant for improving model design (e.g., by extracting additional features to include

as potential confounders).

The main technical innovation is to derive counterfactual claims from any existing

model of discrete dynamics. This presents a problem: Counterfactual simulation

requires specification of a structural causal model (SCM), but there are many SCMs

that are consistent with the original model. Here, any SCM will produce a valid

decomposition, but some decompositions are more interpretable than others. To this

end, we introduce a condition called “counterfactual stability” that imposes common-

sense restrictions on counterfactuals, and introduce a novel SCM that satisfies this

condition. This condition generalizes the monotonicity condition of Pearl (1999) from

binary to categorical variables (necessary for inferring counterfactual dynamics in

models with discrete states). Conditions like these encode the intuition that, e.g., if

we observe an increase in blood pressure in the absence of treatment, then we should

also see a counterfactual increase in blood pressure if given a blood-pressure-increasing

medication. We prove that naive extensions of SCMs that satisfy monotonicity (for

binary outcomes) do not satisfy counterfactual stability (for categorical outcomes). To

resolve this mismatch, we propose a SCM based on the Gumbel-Max trick, and prove

that it does satisfy counterfactual stability. Notably, the research discussed in this

chapter has spurred interest from other research groups, leading to follow-up research

on alternative counterfactual restrictions (Lorberbom et al., 2021) and use cases for

counterfactual simulation (Corvelo Benz and Gomez Rodriguez, 2022).

However, this approach is fundamentally exploratory in nature, requiring the review

of individual patients and their counterfactual predictions, and is best understood

as a “sanity checking” procedure. In the remaining sections, we discuss alternative

approaches which either test those assumptions that are directly testable, or use
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experimental data to further improve the credibility of causal conclusions drawn from

observational data.

1.4.3 Chapter 3: Characterization of Overlap in Observational Stud-

ies

How can clinicians tell if the conclusions of a causal analysis apply to a particular

patient? A necessary (and testable) condition is that similar patients were observed

receiving both the treatment and control. In this chapter, we give an algorithm

(OverRule) for creating interpretable descriptions of the well-represented population,

which could then be published alongside a retrospective study. The overall goal is

demonstrated in Figure 1-6.

In particular, we demonstrate that the problem could be reduced to repeated Neyman-

Pearson classification with Boolean rule sets. This method was developed with a clinical

collaborator from Beth Israel Deaconess Medical Center, inspired by applications in

estimating the effect of post-surgical opioid prescriptions on future misuse, using

health insurance claims data. The resulting output was evaluated in user studies with

a small group of clinicians, and found to represent plausible clinical patterns. For

instance, large opioid doses are rarely prescribed for C-section surgeries, and hence we

cannot reliably infer causal effects of large vs. small doses in this population.

1.4.4 Chapter 4: Falsification before Extrapolation in Casual Effect

Estimation

Experimental data (i.e., from a clinical trial) is often small-scale and narrow in scope.

For instance, Phase 3 clinical trials for COVID vaccines did not originally include

pregnant women (Dagan et al., 2021). To assess causal effects in these unrepresented

populations, we often turn to observational data. In this chapter, we demonstrate that

the experimental data is still useful, despite not covering the population of interest.
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Figure 1-6: When considering a particular patient “Jane Doe”, when can we conclude
whether or not the results of a particular observational study are applicable? A
necessary condition is that patients like Jane are not only included in the study itself,
but have some positive probability of being included in both the treatment and control
groups.

In particular, we develop a method that can be applied when multiple observational

studies cover both the population of interest and the experimental subpopulation. This

scenario arises in two different contexts: First, when there are multiple observational

datasets being used to perform a causal analysis. This first setting typically arises in

the context of network studies, where data is separately analyzed at different hospital

sites for reasons of data privacy, and the results communicated back to a central

analyst for aggregation. Second, the multiple studies could correspond to different

analyses of the same dataset under different sets of causal assumptions, e.g., controlling

for different sets of potential confounding factors.

The core idea is to use the experimental data to test for potential bias, shown in Figure 1-

7, and then conservatively aggregate estimates across observational studies that pass

this test. This is a form of meta-analysis (the analysis of multiple studies) that comes

with guarantees under weaker assumptions than standard meta-analysis assumptions.

Instead of requiring that all studies are unbiased (e.g., free of confounding), this

approach only requires that at least one observational study is unbiased, a relaxation

of standard assumptions in meta-analysis that require all studies to be unbiased.
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What is the effect in the 
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Goal: Provide a valid 
confidence interval on the 
causal effect in this group

Figure 1-7: Combining evidence from multiple observational studies: The first stage of
our approach takes advantage of overlapping populations between observational studies
and randomized trials (the center and right-most subgroups) to assess whether or not
the effect estimates from the observational studies are comparable to those found in the
randomized trial. The second stage of our approach (not shown here) conservatively
combines the studies that pass this test, to construct confidence intervals on the causal
effect that are valid so long as (at least) one of the original observational studies
provides valid confidence intervals.

1.5 Part II: Robust prediction via causal knowledge

1.5.1 Overview of our perspective

Predictive models can fail due to unreliable correlations that change across hospitals

or patient populations. In this part of the thesis, I present methods for techniques

for anticipating and avoiding these failures in advance. We focus on the proactive

setting, where we only have access to data from the training distribution. In this

setting, partial causal knowledge allows us to reason about performance of predictive

models in unseen future scenarios.

Building reliable but effective models requires trade-offs. For instance, many predictive

models in healthcare rely on “operational” signals, data that reflects decisions made

in routine clinical practice. Example 1.2 is a simple example of this kind of signal,

corresponding to whether or not a laboratory test is ordered. Changes in clinical
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practice could impact the correlation between these features and disease. A drastic

approach to learning a reliable model in Example 1.2 would discard lab-related features

altogether, at the cost of lower predictive performance. The methods I discuss in this

thesis allow for more principled trade-offs between reliability and effectiveness, by

considering worst-case performance under plausible changes.

One way to formalize this problem is that we have data from the training distribution,

but we care about performance on an unknown distribution 𝑄 that likely differs from

the training distribution 𝑃 . An idealized objective is to learn a model that minimizes

E𝑄[ℓ(𝑓(𝑋), 𝑌 )] (1.4)

However, we do not have access to 𝑄. Instead, we have limited information about

𝑄, which can be expressed in several forms: We focus on the case where we only

have data from 𝑃 , but we have assumptions that restrict the form of 𝑄. For instance,

consider the laboratory testing example, where we have it that

𝑄(𝑌,𝑂, 𝐿) = 𝑃 (𝑌 )𝑄(𝑂 | 𝑌 )𝑃 (𝐿 | 𝑂, 𝑌 ) (1.5)

Here, we’ve restricted 𝑄 to only differ from 𝑃 along in the conditional distribution

𝑄(𝑂 | 𝑌 ), but have left that distribution unrestricted so far. It is straightforward to

show that 𝑄(𝑌 | 𝑂,𝐿) ̸= 𝑃 (𝑌 | 𝑂,𝐿) under this shift. Given these assumptions, the

analyst in this running example may ask

Should I use laboratory testing in my model, given that the correlation

between ordering a test and the presence of disease is potentially unstable?

That is, the analyst has at least one simple choice to make, when trying to build a

model with “robust” performance: They can train a model 𝑓(𝑂,𝐿) ≈ 𝑃 (𝑌 = 1 | 𝑂,𝐿)

using standard techniques, or they can use only “stable” correlations, which in this

case corresponds to simply predicting using the base rate 𝑃 (𝑌 = 1) = 𝑄(𝑌 = 1),

which does not change. There are other choices that the analyst could make in this
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simple case. They could also, for instance, re-weight the training data to break the

existing correlation between 𝑌 and 𝑂 (Subbaswamy et al., 2019). We focus on the

two ideas above for simplicity.

The correct modelling choice relies on not just specifying what can change (i.e.,

𝑄(𝑂 | 𝑌 )), but also specifying how much it can change, and translating that knowledge

into a quantitative comparison between modelling choices. We adopt a worst-case

perspective here, specifying a set 𝒬 of possible distributions, and considering the

worst-case performance of our models under that set of distributions.

sup
𝑄∈𝒬

E𝑄[ℓ(𝑓(𝑋), 𝑌 )] (1.6)

where ℓ(𝑓(𝑋), 𝑌 ) is some loss function. Choosing a realistic set 𝒬 is essential to

making effective trade-offs between in-distribution accuracy and reliability. Informally,

if 𝒬 consists of 𝑃 and distributions close to it, the minimizer of the worst-case loss

may be very close to the model that simply minimizes E𝑃 [ℓ(𝑓(𝑋), 𝑌 )]. On the other

hand, if 𝒬 includes distributions far away from 𝑃 , then the minimizer of the worst-case

loss may perform very poorly on 𝑃 itself.

In Figure 1-8, we give an illustration taken from Chapter 6, where we increase and

decrease 𝑃 (𝑂 | 𝑌 ), observing the impact on model performance. In this case, the

drastic approach of throwing away laboratory testing information in fact yields better

performance if testing rates go to zero: For most reasonable changes in testing rates,

however, the model 𝑓(𝑂,𝐿) is superior.4

This example also illustrates the role of causality in mapping a real-world change

(here, a change in laboratory testing policies) to a specification of which factors that

shift. Under the causal graph given in Figure 1-3, 𝑃 (𝑂 | 𝑌 ) is the only factor that

would change under a new policy. We could consider other, “non-causal” changes, but

their interpretation is less clear. For instance, if we simply considered a change in

𝑃 (𝑂), with 𝑃 (𝑌, 𝐿 | 𝑂) kept fixed, then this would lead to a change in the marginal

4The details of this example, e.g., the full data-generating process, which differs slightly from the
one presented in Example 1.2 can be found in Appendix D.6.1.
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Figure 1-8: Performance of two models in the lab testing example, as the marginal
testing rate changes.

rates of disease 𝑌 in the new distribution.

This simple example demonstrates a more broadly applicable insight, which extends

readily to more complex machine learning tasks. For instance, in many computer vision

tasks, there is a wide range of meta-data available, and a variety of approaches that

either pre-process the data, or alter the training loss, to learn models that selectively

ignore certain correlations in the data. This is the analog, in our setting, of learning a

model that does not incorporate laboratory testing.

With this in mind, we tackle three challenges in this part of the thesis: First, how do

we translate domain knowledge into more precise characterizations of shift? Second,

how do we learn models that are adapted to those shifts? Third, how do we incorporate

additional information, in the form of data from the target distribution, to further

improve performance?

In Chapter 5 we discuss work on distributional robustness in linear models that

covers all three of these goals, but under somewhat restrictive generative assumptions.

Meanwhile, in Chapter 6 we discuss work that focuses on these first two points in

more general settings, showing how to estimate the worst-case loss for a fixed model

over a precisely-controlled set of possible distributions, which can in turn be used to

choose among different modelling approaches. Finally, in Chapter 7, we conclude with
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a brief vignette about applying these ideas to issues of model design in language-vision

models, using the techniques in Chapter 6 to understand the worst-case performance

of different prompting strategies for developing zero-shot classifiers.

Before introducing our work in more detail, we review two lines of existing thought in

the literature, and how our work fits in. We contrast the approach we take in this

part of the thesis with two strains of work in the literature. First, we discuss causality-

motivated approaches to learning robust prediction models. Here, our core premise

is that these approaches are not always applicable in the scenarios we consider, and

that even when they can be applied, they are overly conservative. Second, we discuss

related work in distributional robustness, where objectives such as Equation (1.6)

are commonly considered. Here, our core premise is that many existing methods

for defining the set 𝒬 are difficult to interpret, and do not allow for incorporating

fine-grained knowledge of plausible shifts.

Causality-motivated methods for learning robust models: Several approaches seek

to learn models that perform well under arbitrarily large causal interventions (which

result in arbitrary changes in selected conditional distributions). Several approaches

proactively specify shifting mechanisms/conditional distributions, and then seek to

learn predictors that have good performance under arbitrarily large changes in these

mechanisms (Subbaswamy et al., 2019; Veitch et al., 2021; Makar et al., 2022; Puli

et al., 2022). Other approaches use auxiliary information, such as environments

(Magliacane et al., 2018; Rojas-Carulla et al., 2018; Arjovsky et al., 2019) or identity

indicators (Heinze-Deml and Meinshausen, 2021) to learn models that rely on invariant

conditional distributions. For instance, invariant risk minimization (IRM) and related

approaches seek a predictor Φ such that E(𝑌 | Φ(𝑋)) is invariant across a set of

discrete environments (Arjovsky et al., 2019; Xie et al., 2020; Krueger et al., 2020;

Bellot and van der Schaar, 2020). However, recent work has pointed to the theoretical

and practical difficulty of learning invariant predictors in the sense of IRM (Rosenfeld

and Risteski, 2020; Kamath et al., 2021; Guo et al., 2021), in part due to the fact that

recovering a truly invariant model, even in linear settings, requires a large number of
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environments. Generalization in non-linear settings requires sufficient overlap between

environments and strong restrictions on the model class (e.g., Christiansen et al.,

2020). Finally, even when it is possible to successfully apply these approaches, their

worst-case optimality is often restricted to cases where the shifts are arbitrarily large.

When the causal interventions (i.e., changes in causal mechanisms) are bounded (i.e.,

not arbitrary), then these approaches are not necessarily optimal. Closest to our work

in motivation is prior work on robustness to bounded shift interventions in linear causal

models (Rothenhäusler et al., 2021), which we build upon in Oberst et al. (2021a)

(Chapter 5). Moreover, Thams et al. (2022) (Chapter 6) can be seen as extending the

ideas of Rothenhäusler et al. (2021) to general non-linear causal models, starting with

the task of evaluating the worst-case loss itself.

Distributionally robust optimization/evaluation with divergence measures: Distribu-

tionally robust optimization (DRO) seeks to learn models that minimize objectives of

the form of Equation (1.6) (Duchi and Namkoong, 2021; Duchi et al., 2020a; Sagawa

et al., 2020). The major difference between our work and prior work lies in the

definition of the set of plausible future distributions 𝒬, often called an “uncertainty

set” in the optimization literature, where the goal is to specify a set that captures

expected shifts, without being overly conservative.

Shifts in 𝑃 (𝑋, 𝑌 ): A conservative approach is to include all joint distributions 𝑃 (𝑋, 𝑌 )

within a certain neighborhood of the training distribution. Many coherent risk

measures can be written as a worst-case loss of this form. For instance, the Entropic

Value-at-Risk (EVaR), with confidence level 1− 𝛼, corresponds to the worst-case loss

over a set of distributions 𝒫 = {𝑃 ≪ 𝑃0 : 𝐷𝐾𝐿(𝑃‖𝑃0) ≤ − ln𝛼}, where 𝑃0 is the

original distribution (Ahmadi-Javid, 2012). Similarly, the Conditional Value-at-Risk

(CVaR) with parameter 𝛼 can be seen as the worst-case loss over an uncertainty set

obtained from a limiting 𝑓 -divergence (see Example 3 of Duchi and Namkoong (2021)),

including all 𝛼-fractions of the original distribution. These measures are appealing, in

that they are straightforward to compute, but can be very conservative. Indeed, such

measures often reduce to only considering the distribution of the loss itself. CVaR, for
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instance, is equivalent to sorting the training examples by their loss, and taking the

average loss of the top 𝛼-fraction.

Shifts in 𝑃 (𝑋) alone: Partially due to this overly-conservative behavior, there has been

a line of work incorporating additional restrictions on the allowable shift (i.e., adding

more assumptions). For instance, Duchi et al. (2020a) considers learning predictive

models that optimize a worst-case loss similar to CVaR (a “worst-case subpopulation

shift”), but where only 𝑃 (𝑋) is allowed to change, and 𝑃 (𝑌 | 𝑋) is assumed to be

constant. However, many real-world shifts do not fit this framework: In Example 1.2,

for instance, both 𝑃 (𝑋) and 𝑃 (𝑌 | 𝑋) are changing, where 𝑋 = (𝑂,𝐿), as a result of

a shift in 𝑃 (𝑂 | 𝑌 ).

Shifts in a conditional distribution: The work we introduce in Chapter 6 is closest to

Subbaswamy et al. (2021), who consider evaluating the loss under worst-case changes

in a conditional distribution, but while we consider parametric shifts, they estimates

the loss under worst-case (1− 𝛼) conditional subpopulation shifts. However, it is not

obvious how to choose an appropriate level of 𝛼: in some settings, seemingly plausible

values of 𝛼 correspond to entirely implausible shifts. In Chapter 6, we give a simple

lab-testing example, where the worst-case 20% subpopulation is one where healthy

patients are always tested, and sick patients never tested.

In contrast to these methods, the approaches we outline in this section use explicit

parametric perturbations to define shifts, as opposed to distributional distances or

subpopulations. We now discuss our contributions in each chapter in more technical

detail.

1.5.2 Chapter 5: Regularizing towards Causal Invariance: Linear

Models with Proxies

In this chapter we give methods for learning linear models with minimal worst-case

performance over a set of distributions. In particular, we consider a set of distributions

that arise due to causal interventions on an “anchor” variable in an underlying linear

74



𝐴 𝑊

𝐻𝑋

𝑌

Figure 1-9: Linear SCM, where variables are linear functions (plus additive noise) of
their parents. 𝐴 is assumed to be observed in prior work, while 𝑊 is a proxy for the
unobserved 𝐴 in ours.

structural causal model (SCM). Here, we extend prior work (Rothenhäusler et al.,

2021) to allow for specifying both asymmetric changes in distribution (tailored to

existing domain knowledge) and changes in distribution that influence unobserved

variables.

We use a theoretical model from prior work (Rothenhäusler et al., 2021), given

in Figure 1-9, where 𝐴 ∈ R𝑑𝐴 represents a variable whose distribution may change, and

which has some (unknown) causal relationship to 𝑋, 𝑌 , and potentially other hidden

variables 𝐻. In the simplest case, 𝐴 may encode discrete environments, but can more

generally encode other factors of variation, allowing us to consider distributionally

robust objectives of the form

min
𝛾

sup
P∈𝐶𝐴(Ω)

EP[(𝑌 − 𝛾⊤𝑋)
2
], where 𝐶𝐴(Ω) := {P(𝑋, 𝑌, 𝑑𝑜(𝐴 := 𝜔)) : 𝜔 ∈ Ω} (1.7)

where the set of possible distributions is defined by interventions on 𝐴 within some

uncertainty set Ω. Rothenhäusler et al. (2021) consider sets Ω𝜆 = {𝜔 ∈ R𝑑𝐴 : 𝜔𝜔⊤ ⪯

(1+𝜆)E[𝐴𝐴⊤]}, where 𝜆 ≥ −1 is a hyperparameter, and the intervention is constrained

by a rescaling of the covariance of 𝐴. They demonstrate that this objective is equivalent

to the following, which can be optimized using the training data when 𝐴 is observed

sup
P∈𝐶𝐴(Ω𝜆)

EP

[︁
(𝑌 − 𝛾⊤𝑋)

2
]︁
= E

[︁
(𝑌 − 𝛾⊤𝑋)

2
]︁
+ 𝜆E𝐴

[︁
(E[𝑌 − 𝛾⊤𝑋 | 𝐴])2

]︁
. (1.8)

However, this leaves several challenges unresolved, which we address in this chapter.

Identifying the worst-case loss with unobservable factors 𝐴: Suppose that 𝐴 represents
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Figure 1-10: Correctly specifying the robustness set allows for a better trade-off between
accuracy and robustness: Here, we plot the MSE (Y-axis) of different models under
interventions on 𝐴 (X-axis). Here, the grey region indicates a user-specified set of
plausible interventions on 𝐴 in the target distribution, and the green line denotes
performance of a model trained to minimize worst-case MSE over this set. We show
the performance of a standard OLS predictor (blue line) and the invariant casual
predictor (orange line) for reference.

social determinants of health (e.g., income, housing security, etc., which influence both

𝑋, 𝑌 ), and we wish to learn a model that will perform well across different hospitals.

Here, we are unlikely to observe 𝐴 directly, but may instead only have noisy proxies

of 𝐴 (shown as 𝑊 in Figure 1-9). For instance, we may have self-reported data on

income and housing status, as well as third-party data, but lack reliable ground-truth

measurements. Here, we demonstrate theoretically that noise in these proxies reduces

our worst-case guarantees, if only a single proxy is available. However, we demonstrate

that two conditionally independent proxies can be used to recover guarantees as if 𝐴

were observed, by constructing an objective that is equivalent (in the limit of infinite

data) to Equation (1.8), but where proxies 𝑊,𝑍 are used in place of 𝐴.

Further restricting shifts using domain knowledge: In the same motivating example

(𝐴 representing socioeconomic factors), we may have additional domain knowledge

about plausible shifts in 𝐴, such as knowledge that a target hospital generally has

lower income patients, rather than higher-income patients. Correctly specifying the

robustness set allows for a better trade-off between accuracy and robustness, as shown

in Figure 1-10, where we plot the MSE (Y-axis) of different models under interventions
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on 𝐴 (X-axis). Here, the grey region indicates plausible interventions on 𝐴 in the

target distribution, and the green line denotes performance of a model trained to

minimize worst-case MSE over this set. We show the performance of a standard OLS

predictor (blue line) and the invariant casual predictor (orange line) for reference.

These types of asymmetric constraints on the uncertainty set can be represented by

ellipsoidal constraints on 𝜔 in Equation (1.7), and we give a method for learning

models that minimize a worst-case loss over these alternative sets of distributions.

This type of customized constraint is also relevant for adapting models to new settings:

Given the mean and covariance of a single proxy in the test distribution, one can learn

a model (using the training data) with optimal performance on the test domain.

In this work, we assume that causal relationships in data can be well-approximated by

linear models with additive noise, but this assumption is not generally realistic in many

real-world applications. With that in mind, we view this research as most valuable

as a tool for building intuition that is useful in further work in more general models

(see e.g., Chapter 6). Indeed, linear SCMs are often used to motivate causality-based

methods for robustness: For instance, Invariant Risk Minimization (IRM), introduced

by Arjovsky et al. (2019), is a popular benchmark used in distributional generalization,

whose main theoretical guarantees5 are given under the assumptions of a linear SCM

that relates latent variables to the outcome 𝑌 . Similar models are used in follow-up

theoretical work to demonstrate some of the shortcomings of approaches like IRM

(Rosenfeld and Risteski, 2020).

In the next chapter, we go beyond linear models, to enable the use of similar ideas in

modern applications of machine learning such as computer vision.

5See Theorem 9 of Arjovsky et al. (2019)
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1.5.3 Chapter 6: Evaluating Robustness to Dataset Shift via Para-

metric Robustness Sets

In this chapter, our goal is to proactively understand the sensitivity of a predictive

model to distribution shift, using only data from the training distribution. The

core goal is to estimate the worst-case loss of a given model 𝑓(𝑋) under a set of

plausible future distributions. Our two main contributions are to (a) define a flexible

framework for specifying a set of plausible, interpretable, and bounded shifts, and

(b) an approximation-based approach for finding worst-case shifts from within that

set, which empirically out-performs naive approaches like optimizing a re-weighted

objective.

Prior work considers similar worst-case losses over uncertainty sets defined by e.g.,

𝑓 -divergence balls around the training distribution (Duchi and Namkoong, 2021; Duchi

et al., 2020a; Subbaswamy et al., 2021). However, these approaches limit our ability

to both interpret the resulting distributions and refine the set of allowable changes.

For instance, consider a machine learning model that uses X-ray images or laboratory

tests to predict disease: We might ask “how would our performance change, if we

tested fewer patients?” or more broadly “what changes to testing policy would cause

the largest drops in predictive performance?”

This type of question can be answered clearly via our approach, which we illustrate in

the context of (Figure 1-11a), where disease (𝑌 ) is predicted using a binary indicator

for whether or not a lab test has been ordered (𝑂) and the resulting lab value, if

available (𝐿). First, for any factorization of the joint distribution 𝑃 (𝐿,𝑂, 𝑌 ), the user

specifies a set of factors that can change, e.g., choosing 𝑃 (𝑂 | 𝑌 ) to capture a change

in laboratory testing policies.

𝑃 (𝐿,𝑂, 𝑌 ) = 𝑃 (𝐿 | 𝑂, 𝑌 )𝑃 (𝑂 | 𝑌 )𝑃 (𝑌 )

=⇒ 𝑃𝛿(𝐿,𝑂, 𝑌 ) = 𝑃 (𝐿 | 𝑂, 𝑌 )𝑃𝛿(𝑂 | 𝑌 )𝑃 (𝑌 ).

Our approach allows for shifts in any number of factors, as long as each changing factor
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Figure 1-11

is exponential family. Second, the user specifies a function 𝑠(𝑌 ; 𝛿), parameterized by

𝛿, to describe the shift, which enters as an additive change in the natural parameters

of the exponential family

𝑃𝛿(𝑂 | 𝑌 ) = sigmoid(𝜂(𝑌 ) + 𝑠(𝑌 ; 𝛿)),

where here, 𝜂(𝑌 ) denotes the original conditional log-odds. In this example, a uniform

increase or decrease in testing can be modelled as 𝑠(𝑌 ; 𝛿) = 𝛿0, shown in Figure 1-11b.

Finally, the user specifies a set of constraints on 𝛿, e.g., quadratic constraints ‖𝛿‖2 < 𝜆,

and we seek to estimate a worst-case loss

sup
‖𝛿‖≤𝜆

E𝑃𝛿
[ℓ(𝑓(𝑋), 𝑌 )]. (1.9)

In this general approach, each 𝑃𝛿 always shares support with the training distribution,

enabling the use of importance sampling to estimate the expected loss. However,

reweighting approaches can suffer from high variance in estimation, and finding the

worst-case 𝛿 involves solving a non-convex optimization problem.

We therefore propose an alternative method, deriving a second-order Taylor approxima-
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tion to the expected loss under shift (orange line in Figure 1-11b), whose approximation

error can be bounded. For quadratic constraints on 𝛿, this yields a tractable optimiza-

tion objective, a non-convex, quadratically constrained quadratic program (QCQP)

which can be solved efficiently (Conn et al., 2000). Using a GAN-based simulation

derived from the CelebA dataset, we compare this proposed approach to a purely

re-weighting based approach, and find that (for moderately sized shifts) the Taylor

approximation approach tends to find better solutions to Equation (1.9), with more

reliable estimates of the resulting loss.

1.5.4 Chapter 7: Auditing and Prompt Design for Large Language-

Image Models

In this chapter, we illustrate the application of the approach given in Chapter 6 for

probing the robustness of models to structured shifts in distribution. In particular, we

consider CLIP (Contrastive Language-Image Pre-training) (Radford et al., 2021), a

self-supervised model of image-text pairs, which has demonstrated remarkable zero-shot

performance on a variety of computer vision benchmarks. For instance, it outperforms

a fully supervised linear classifier (fit on ResNet-50 features) on ImageNet. To perform

zero-shot classification, CLIP performs matching between a set of fixed prompts (short

strings of text), and a given image. To perform zero-shot classification, it typically

suffices to use prompts of the form “a photo of a label.” (one for each label in the

dataset), and choose the prompt with the highest similarity to the image. We refer to

the selection of this set of strings as the problem of “prompt design”.

We probe the robustness of CLIP to structured shifts in distribution, and explore the

impact of prompt design on the robustness of the resulting zero-shot classifier. We

consider structured shifts in distribution when image attributes are available, with the

presumed causal structure shown in Figure 1-12.

Unlike the other chapters in this thesis, the work presented here consists primarily of

exploratory work, working through the challenges that can arise when applying the
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𝑌𝑍𝑘
. . .𝑍1 𝑍𝑘+1 . . . 𝑍𝐾

𝑋

Figure 1-12: An image 𝑋 is a function of binary attributes 𝑍 and label 𝑌 . Some
components of 𝑍 cause 𝑌 , while others are caused by 𝑌 , and all of their distributions
are subject to change.

method developed in Chapter 6 to the problem of model design (in this case, prompt

design) on a real imaging dataset.

With that in mind, in this chapter we discuss some of those challenges, and potential

solutions. The first challenge is the relative complexity of interpreting the shifts

themselves, particularly in the absence of a clear causal structure over all variables.

The second is the correct performance metric: While worst-case performance is intuitive

in some ways, it is lacking in other ways, particularly when the magnitude of the

change is not clear a-priori.
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Part I

Reliable causal inference and policy

evaluation
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Chapter 2

Counterfactual Policy Introspection

using Structural Causal Models

This chapter was previously published as my M.S Thesis (Oberst, 2019).

2.1 Introduction

2.1.1 Reinforcement Learning in Healthcare: A Challenging Task

There is a long tradition of using data to improve healthcare and public health,

from randomized trials to test the efficacy of new drugs, post-market surveillance for

adverse drug interactions, and the practice of epidemiology more broadly, e.g., the use

of observational studies to understand the public health impact of everything from

cigarettes to air pollution. Over the past decade in the United States, there has also

been an ever-expanding amount of raw healthcare data, driven by the rapid adoption

of electronic medical records (EMRs). As the available data has expanded, so have

the ambitions of some segments of the research community, fuelled by the hope that

larger and richer datasets can lead to breakthroughs in personalized medicine.

With that in mind, there has been a growing interest in the application of machine
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learning to healthcare, not only for diagnostic purposes (e.g., image processing in

radiology and pathology), but also for learning better treatment policies, tailored to

individual patients. This requires solving two closely related subproblems: First, how

to learn a policy from observational (that is, retrospective) data, and second, how to

evaluate it.

For sequential decision-making settings in healthcare, where a dynamic treatment

policy1 is required, several recent papers have used techniques from reinforcement

learning (RL) to try and learn optimal policies for treating everything from sepsis

(Raghu et al., 2017, 2018; Komorowski et al., 2018; Peng et al., 2018) to HIV (Parbhoo

et al., 2017) and epilepsy (Guez et al., 2008). This is a challenging task, in ways

that are quite different from modern success stories in reinforcement learning, such as

achieving super-human performance at board games (Silver et al., 2018). The latter is

a task that can be perfectly simulated, allowing for the (massive-scale) exploration and

direct evaluation of different policies in a deterministic setting. In contrast, medicine

is a stochastic, partially observable environment where direct experimentation by an

algorithm would not be tolerable. As a result, we cannot simply try many policies

and see if they work, but need to infer how a new policy would perform, using data

collected under an older, different policy. In the RL literature, this is known as

off-policy evaluation.

Of course, researchers in RL are not the first to have encountered this challenge. The

evaluation of dynamic treatment policies (using observational data) is a well-studied

causal inference problem in epidemiology and biostatistics, which is generally addressed

with the application of g-methods, first introduced by Robins (1986). Lodi et al. (2016)

and Zhang et al. (2018) are two recent examples, using g-methods to evaluate HIV

treatment and anemia management strategies respectively. The techniques used in RL

to evaluate novel treatment policies have much in common with these techniques, such

as modelling the environment directly or re-weighting the observed data, as discussed

in Section 2.2.

1A dynamic treatment policy is one which takes intermediate outcomes into account, like stopping
a medical treatment when a patient has an adverse reaction
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Quantitative evaluation is nonetheless fraught with difficulties that no mathematical

method can address without making assumptions. For instance, if important variables

are not measured (such as confounding variables, discussed in Section 2.2.1), then

quantitative evaluation can give misleading results. These and other challenges, such

as small effective sample sizes and miss-specification of reward, are discussed at length

in Gottesman et al. (2019a).

Finally, a wealth of data exists in settings (e.g., EMRs, mobile health) that are not

curated by any means, and are certainly not designed primarily for research purposes.

This complicates matters further, and stands in contrast to research done with curated

data registries, such as the US Renal Data System, used in Zhang et al. (2018),

or sequentially randomized trials, such as the Strategic Timing of AntiRetroviral

Treatment (START) trial, analyzed in Lodi et al. (2016).

2.1.2 Motivation: Debugging Policies and Models

Quantitative evaluation of policies can therefore be misleading for any number of

reasons: There may exist unmeasured confounding in the dataset, the reward function

(that is, the objective to be optimized) may be poorly specified, or there may not exist

sufficient samples to evaluate policies that diverge too much from existing practice.

Creating more robust methods for off-policy evaluation is an area of active research

(Gottesman et al., 2019b; Liu et al., 2018; Kallus and Zhou, 2018a), but a fundamental

uncertainty remains.

Moreover, it may be difficult to inspect a policy directly, to determine whether or

not it seems reasonable: In contrast to the epidemiological studies mentioned earlier

(Zhang et al., 2018; Lodi et al., 2016) which pre-specify a dynamic policy to evaluate

based on domain knowledge, it is not always clear what a reinforcement-learned policy

is doing. In Raghu et al. (2017), for instance, the policy is parameterized by a neural

network, and in Komorowski et al. (2018), the policy associates an action with each of

750 patient state clusters derived via k-means clustering.
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With that in mind, consider the following hypothetical: Suppose that you have the

power to change medical practice, and are given a complex policy which is claimed

(e.g., due to off-policy evaluation) to perform far better than existing clinical guidelines.

How might you proceed? Given the challenges of retrospective evaluation, you might

want to test the policy prospectively, perhaps using a randomized trial. But before

you did that, you would want to better understand the policy, before investing a large

amount of time and money in a gold-standard evaluation. In essence, you may wish

to search for ‘bugs’ in the policy (like a tendency to take dangerous actions), or the

model used to generate it (like the omission of a critical input), and iterate until you

are confident that the policy has learned something reasonable.

There are a variety of ways you could do this, even if the policy is too complex to

be interpretable directly. For instance, a physician might randomly select some real

patients, pull up their full medical record, and compare the actions taken by the

doctors to the recommendations of the learned policy, to see if they seem reasonable.

Jeter et al. (2019) perform such an analysis in their critique of Komorowski et al.

(2018), highlighting a sepsis patient where the learned policy makes a counter-intuitive

decision to withhold treatment during a critical hypotensive episode. However, manual

inspection of randomly selected trajectories may be inefficient, and difficult to interpret

without more information: If we are to discover new insights about treatment, shouldn’t

there be some disagreement with existing practice?

This poses two problems: First, how do you surface the ‘rationale’ of a policy? In

an ideal world, we could elicit a justification for each action. We refer to this as

the challenge of policy introspection. Second, supposing that you could elicit these

justifications en masse across all trajectories, how would you select the most interesting

case examples for manual inspection?
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2.1.3 Counterfactual Policy Introspection

In this chapter, we give a procedure that uses counterfactual trajectories to address both

of these questions, and refer to this procedure as counterfactual policy introspection.

Given a policy and a learned model of the environment, we provide a post-hoc method

to generate counterfactual trajectories for each observed (or ‘factual’) trajectory, which

attempt to describe what the model expects would have happened, in hindsight, if

that policy had been used. We note that this is most useful in applications that

already require the learning of a model of the environment, such as in model-based

reinforcement learning. We can then compare counterfactual trajectories with observed

trajectories, potentially with additional side-information (e.g., chart review in the case

of a patient) so that domain experts can “sanity-check” a policy and the model used

to learn it. In a way that we make precise in Section 2.3.2, if these counterfactuals are

obviously wrong, then it provides evidence that the learned model of the environment

is flawed.

Thus, our end-to-end procedure for ‘debugging’ models and policies is as follows,

illustrated in Figure 2-1: First, once we have counterfactual trajectories for each

observed trajectory, we can highlight episodes where there are surprisingly large

differences between the factual and counterfactual outcomes. Second, we can then

perform manual examination of the observed and counterfactual trajectories, to

identify disagreements between the learned policy and existing practice, and to try

and understand the rationale for them. Critically, because these are real patients, we

can also go look for additional information to ‘kick the tires’ of the counterfactual

conclusions. Finally, we can use our findings to iterate on the model and policy. For

instance, looking at the medical record may suggest new variables to include in our

model of the environment, at which point we can repeat the process again.

We stress that these counterfactuals are conceptually distinct from the simulation of

new trajectories using a learned model of the environment. In particular, we don’t

want to know what the model believes might generally occur under a different policy:

We want to know what would have been different in a specific trajectory. In Figure 2-2
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1 Decomposition of reward 
over real episodes, to 
identify interesting cases

Approach

2 Examine counterfactual 
trajectories under new policy

3 Validate and/or criticize 
conclusions, using full patient 
information (e.g., chart review)

Example

Suggests episodes for 
further inspection

Figure 2-1: Conceptual overview of our approach: First, counterfactual trajectories are
generated for all observed trajectories, and are then used to guide manual inspection.
The figure on the right is taken from a synthetic example of sepsis management in
Section 2.6.2, and highlights patients who died, but who would have allegedly lived in
the counterfactual.

we give a conceptual example of this distinction, in line with the medical use case

described above. In this example, we imagine an observed trajectory where the patient

had a rare, adverse reaction to an antibiotic. In a model-based simulation (or ‘roll-

out’), what might occur? Since the reaction is rare, then a model-based simulation

might reasonably predict the most common outcome for patients in general (that the

infection is cleared). Naturally, this does not satisfy our intuition for what would have

happened to this specific patient (we already know!), but a model-based simulation is

not designed to satisfy this intuition. A counterfactual trajectory, on the other hand,

is designed to take into account what actually occurred to this patient, in a way that

will be made precise in Section 2.2.3.

Moreover, counterfactual trajectories incorporate strictly more information about the

observed trajectory, and thus exhibit less variance than a freshly simulated trajectory

from a model. This is illustrated in a toy 2D grid-world setting in Figure 2-3, where

the counterfactual trajectories in the left-hand figure (in blue) overlap perfectly with

the observed trajectory (in black) when the actions are identical, and exhibit little
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If the new policy had been applied to this patient…

Antibiotics

…patient 
has infection𝑆0

𝐴1

Time

Antibiotics Mechanical 
Ventilation

Sedation

…patient 
has infection
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𝑆: State
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𝐴1 𝐴2 𝐴3

𝑆1
…drug 
reaction

Counterfactual influenced 
by actual outcome

Figure 2-2: In this example, we imagine an observed trajectory where the patient
had a rare, adverse reaction to an antibiotic. In a model-based roll-out, even if the
trajectory is started in the same state, with the same initial action, it is unlikely that
all model-based roll-outs will include this adverse event. Thus, the model-based roll-out
is harder to critique: Perhaps the model is correct, and this patient just got unlucky.
A counterfactual trajectory, on the other hand, is designed to isolate differences which
are due to differences in actions.

variability even after actions diverge. This is in contrast to the simulated trajectories

in the right-hand figure (in red), which borrow no information from the observed

trajectory, and thus are different from the beginning, even under identical actions.

This example is discussed in far more depth in Section 2.6.1.

Returning to our motivating example of evaluating a complex treatment policy, it is
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Figure 2-3: A visual example of how counterfactuals isolate differences that are
due solely to divergence in actions from the factual, taken from Section 2.6.1. The
black line represents an observed trajectory, whereas the blue and red lines represent
counterfactual trajectories and model-based simulations, respectively

worth repeating that these counterfactuals may be obviously wrong, especially if we

go to the medical record and use additional side information to check it against our

intuition. This is a feature, not a bug, of our approach: In a setting where the model

used for counterfactual evaluation is the same model that was used to train the policy,

this can be used to confirm that suspicious actions (e.g., withholding treatment) are

based on a faulty model of the world, versus a real insight into the best treatment.2

In a model-based simulation, by contrast, this is difficult to ascertain: Was the model

wrong, or was this patient just one of the unlucky ones?

However, towards generating these counterfactual trajectories, we have to deal with a

fundamental issue of non-identifiability: As we show in Section 2.4.1, even with an

infinite amount of interventional data, there are multiple structural causal models

(as introduced in Section 2.2.3) which are consistent with with the data we observe,

but which suggest different distributions of counterfactual outcomes on an individual

level. This is not a new problem, and a common assumption in the binary setting

2We make this intuition precise in Section 2.3.2
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to identify counterfactuals is the monotonicity condition (Pearl, 2000). However, to

our knowledge, there is no analogous condition for the categorical case, as would be

required to generate counterfactuals in discrete state-space models of the environment.

This motivates our main theoretical contribution, which is two-fold. First, we introduce

a general condition of counterfactual stability for structural causal models (SCMs)

with categorical variables and prove that this condition implies the monotonicity

condition in the case of binary categories. Second, we introduce the Gumbel-Max

SCM, based on the Gumbel-Max trick for sampling from discrete distributions, and

demonstrate that it satisfies the counterfactual stability condition. We note that any

discrete probability distribution can be sampled using a Gumbel-Max SCM; As a

result, drawing counterfactual trajectories can be done in a post-hoc fashion, given

any probabilistic model of dynamics with discrete states. To conclude, we restate our

main contributions, which are as follows:

1. Using Counterfactuals for Policy Introspection and Model-Checking: Our main

conceptual contribution is the procedure described above, using counterfactual

trajectories as a tool for introspection of learned policies and models. Additionally,

we build on the theoretical results of (Buesing et al., 2019) in Section 2.3.2 to

note that the expected counterfactual reward over all factual episodes (if the

SCM is correctly specified) is in fact equal to the expected reward using freshly

simulated trajectories. In this way, if counterfactual conclusions are incorrect

on their face, it casts suspicion on the learned model of dynamics used in the

first place, and any quantitative estimate of reward (as derived through e.g., the

parametric g-formula, discussed in Section 2.2.1) that it yields.

2. Counterfactual Stability and Gumbel-Max SCMs: Our main theoretical contri-

bution is twofold: First, we introduce the property of counterfactual stability

for SCMs with categorical variables, and prove that this condition implies the

monotonicity condition (Pearl, 2000) in the case of binary categories. Second, we

introduce the Gumbel-Max SCM, a general SCM for categorical variables which

we prove to satisfy the counterfactual stability condition. We note that any
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discrete probability distribution can be sampled using a Gumbel-Max SCM; As

a result, drawing counterfactual trajectories can be done in a post-hoc fashion,

given any probabilistic model of dynamics with discrete states.

3. Application to a Real-World Setting: In addition to a series of synthetic

examples, we replicate the work of Komorowski et al. (2018) in learning a

policy for sepsis management using EMR data. We apply counterfactual policy

introspection with the assistance of a domain expert (in this case, a clinician),

including the review of specific counterfactual trajectories using the full medical

record as side information.

2.1.4 Structure of this chapter

• Background (Section 2.2): We review the interrelated problems of learning and

evaluating a dynamic policy, drawing connections between the literature on causal

inference and model-based reinforcement learning. We also review the concepts

necessary for generating counterfactuals, such as structural causal models. We

draw a distinction between counterfactual and interventional distributions, and

highlight both the inherent non-identifiability of counterfactuals, as well as the

monotonicity assumption used to identify them in the binary case.

• Counterfactual Decomposition of Reward (Section 2.3): We begin by demon-

strating how common causal models assumed in the RL literature (MDPs and

POMDPS) can be cast as structural causal models. We further discuss the

connection between counterfactual estimates of rewards and notions like CATE

and ITE in the causal inference literature. We conclude by building on the theo-

retical results of (Buesing et al., 2019) in Section 2.3.2 to note that the expected

counterfactual reward over all factual episodes (if the SCM is correctly specified)

is in fact equal to the expected reward using freshly simulated trajectories.

• Gumbel-Max SCMs for Categorical Variables (Section 2.4): With the motiva-

tion from Section 2.3 in mind, in this section we introduce our core theoretical
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contributions. First, we introduce the property of categorical stability as a

categorical analog of the montonicity assumption. Then, we introduce and

motivate the Gumbel-Max SCM by proving that it satisfies this property. We

also highlight connections to the discrete choice literature, which are useful for

building intuition around the counterfactual stability condition.

• SCMs with Additive Noise for Continuous Variables (Section 2.5): In this brief

section, we highlight some possible approaches for developing general SCMs for

continuous variables, by examining common continuous state-space models in

RL and giving an SCM which is consistent with their formulation.

• Illustrative Applications with Synthetic Data (Section 2.6): To build intuition,

we demonstrate the use of counterfactual trajectories in two idealized environ-

ments: A 2D grid-world and an illustrative simulator of sepsis. The former

builds intuition for how counterfactual inference works in SCMs, while the latter

demonstrates our proposed use of counterfactuals for policy introspection.

• Real-Data Case Study: Sepsis Management (Section 2.7): In this section, we

replicate the work of Komorowski et al. (2018) using real EMR data to learn a

policy of sepsis management, and we apply our proposed methodology to perform

introspection of the resulting policy. Most notably, we use the full medical record

and the help of a clinician to examine counterfactuals for a particular trajectory,

and discuss our insights from this exercise in Section 2.7.4.

2.2 Background

In this section, we lay out the necessary background for the later sections. Broadly

speaking, we start by discussing the central problem of learning how to act from data.

This is intrinsically a causal question: We would like to claim that if we acted in a

particular way, this would bring about a particular outcome. Thus, in Section 2.2.1,

we discuss some basic principles of causal inference, starting with the simplest case of
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estimating the effect of a binary action from interventional data (as in a randomized

control trial), before moving on to techniques used to estimate the effect of dynamic

treatment regimes from observational data. We highlight in particular some general

classes of methods: Those which model the causal relationships directly, those which

rely on re-weighting the data, and those which combine the two approaches.

With this background in hand, we turn to the problem of learning a policy from data,

and highlight methods used in the reinforcement learning (RL) community for doing

so in Section 2.2.2. We draw an explicit connection to the literature on dynamic

treatment regimes, noting that RL methods can be viewed as assuming a particular

causal graph with a certain Markov structure. With this assumption in mind, we

discuss a basic method for learning an optimal policy, known as Policy Iteration, which

falls under the general class of RL methods which are ‘model-based’, in that they

assume access to a model of the environment. We then discuss two approaches in the

RL literature for evaluating policies that are different from the one that generated the

data, a problem known as off-policy evaluation: The first of these methods, known as

model-based off-policy evaluation (MB-OPE) bears some similarity to the g-formula

used in the literature on evaluating dynamic treatment regimes. The second method is

a re-weighting method, which is similar to inverse propensity (IP) weighting methods,

another set of g-methods.

Finally, we introduce the notion of counterfactuals in Section 2.2.3, where we formalize

the distinction between interventional questions, like ‘what will happen if I apply policy

X’, and counterfactual questions, like ‘what would have happened if I had applied policy

X, given that I applied policy Y and observed outcome Z’. To do so, we introduce

the mathematical framework of structural causal models, and highlight the challenges

inherent in estimating counterfactuals, which are by definition never observed. We note

that this is a different (and strictly more challenging) problem than the usual causal

inference question, because it deals with individual-level counterfactuals (analogous to

the individual treatment effect), instead of population-level causal effects (analogous

to the conditional average treatment effect).
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Figure 2-4: Causal graph corresponding to the motivating example of a binary treatment
and binary outcome

We refer the reader to several reference on the above topics for more detail, in lieu of

attempting to reproduce the entirety of these fields within the confines of this chapter.

In particular, we recommend Hernan and Robbins (2019) for an overview of causal

inference with dynamic treatment regimes, and Pearl (2009); Peters et al. (2017) for

an overview of causal graphs and structural causal models. For a general overview of

reinforcement learning, we recommend Sutton and Barto (2017).

2.2.1 Causal Inference from Observational Data

Motivating Example: Binary Treatments

Suppose that we want to evaluate the causal effect of a binary action, such as taking

an antibiotic, on a binary outcome, such as whether or not an infection is cleared.

Let 𝑇 ∈ {0, 1} represent the action (whether or not we gave the treatment), and let

𝑌 ∈ {0, 1} represent the outcome. Suppose we also have access to covariates / features

𝑋 which describe potential confounding factors, so-called because they influence both

the treatment decision and the outcome. For any given individual, we can use 𝑌1

and 𝑌0 to represent the potential outcomes (Morgan and Winship, 2014) under the

treatment and control respectively, of which we only observe one of the two, e.g.,

𝑌 = 𝑌1𝑇 + 𝑌0(1− 𝑇 ). We can also denote this set-up using a causal graph, a directed

acyclic graph (DAG) which encodes the causal relationships between random variables

(Pearl, 2009). In this case, the corresponding DAG is given in Figure 2-4, with arrows

that represent the causal relationships between variables.

In this example, we might be interested in the average treatment effect (ATE), which
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can be denoted by

𝜏 = E[𝑌 |𝑑𝑜(𝑇 = 1)]− E[𝑌 |𝑑𝑜(𝑇 = 0)],

where the 𝑑𝑜(·) operator is used to indicate an intervention. The 𝑑𝑜(·) operator is

reviewed in (Pearl, 2009), and is accompanied by the rules of do-calculus, which

give us a set of conditions which specify when (and how) it is possible to obtain

causal relationships, like P(𝑌 |𝑑𝑜(𝑇 = 𝑡)), from observed conditional relations like

P(𝑌 |𝑇 = 𝑡). Intuitively, the ATE corresponds to the expected difference in outcome

between two policies, where we treat everyone E[𝑌 |𝑑𝑜(𝑇 = 1)] or we treat no one

𝐸[𝑌 |𝑑𝑜(𝑇 = 0)]. In the simplest case, if the treatment assignment is randomized such

that P(𝑇 |𝑋) = P(𝑇 ), then we have the equivalence E[𝑌 |𝑑𝑜(𝑇 = 𝑡)] = E[𝑌 |𝑇 = 𝑡]. For

instance, in an ideal randomized control trial with full compliance, we could estimate

the causal effect by simply looking at the difference in outcome between the treatment

and control groups.

Dealing with Observational Data

It should be noted that causal inference requires assumptions, which are often not

empirically verifiable. For instance, if treatment assignment is not randomized, as is

typical for observational data, a common approach is to first make the assumption

of no unmeasured confounding : That is, we assume that we observe, through 𝑋, all

of the variables which impact both the treatment and the outcome. We refer the

reader to a variety of references (Hernan and Robbins, 2019; Pearl, 2009; Morgan and

Winship, 2014; Imbens and Rubin, 2015) for a more comprehensive treatment of the

topic, but we will briefly highlight three broad approaches, which have analogs in the

reinforcement learning literature.

• First, we can model the conditional relationships directly, by estimating P(𝑌 |𝑋, 𝑇 ),

which is equivalent to P(𝑌 |𝑋, 𝑑𝑜(𝑇 )) under the assumption of no unmeasured

confounding, and use this to calculate P(𝑌 |𝑑𝑜(𝑇 )) =
∫︀
P(𝑌 |𝑋,𝑇 )P(𝑋)𝑑𝑥 by

marginalizing over 𝑋. This is known as standardization in epidemiology.
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• Second, we can re-weight the data to create a psuedo-population that approxi-

mates the results of a randomized trial. For instance, we might use an estimate

of the treatment probability P(𝑇 |𝑋), known as the propensity score, and use

this to re-weight our observations (Rosenbaum and Rubin, 1983b), or stratify

into sub-populations with similar propensity (Rubin and Rosenbaum, 1984).

The more general form of this approach (discussed below) is known as inverse

probability (IP) weighting in epidemiology.

• Finally, we can combine the two approaches above to develop doubly-robust

estimators (Bang and Robins, 2005), which provide asymptotically correct

estimates if we can correctly estimate either P(𝑌 |𝑋,𝑇 ) or P(𝑇 |𝑋).

ATE, CATE, and ITE

So far, we have implicitly focused on a very simple decision-making problem, by

focusing on the estimation of the ATE. In effect, this corresponds to evaluating the

difference in the expected outcome between two policies: ‘Treat everyone’ and ‘treat

no one’. In the notation of potential outcomes, introduced in Section 2.2.1, the ATE

corresponds to the quantity

𝜏 = E[𝑌1 − 𝑌0]

We can refine this further by investigating the conditional average treatment effect

(CATE), which conditions on a specific subpopulation 𝑋, and can be denoted by the

quantity

𝜏𝑥 = E[𝑌1 − 𝑌0|𝑋]

In the causal graph given in Figure 2-4, this can (in principle) be estimated directly

using regression models 𝑓(𝑋,𝑇 ) ≈ E[𝑌 |𝑋,𝑇 ] since 𝑃 (𝑌 |𝑋, 𝑑𝑜(𝑇 )) = 𝑃 (𝑌 |𝑋,𝑇 ) in

this case. How does this relate to learning a policy? In this simple setting, learning

a policy follows naturally from evaluating the effect of the binary treatment. For

instance, once we have learned the CATE, we can devise a policy which treats each

patient (with covariates 𝑋) based on the sign of the estimated CATE 𝜏𝑥.
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Note that there is a conceptual distinction between the CATE and what we will refer

to as the individual treatment effect (ITE), which is simply the difference in potential

outcomes, denoted for an individual 𝑗 by

𝜏
(𝑗)
𝑖𝑡𝑒 = 𝑌

(𝑗)
1 − 𝑌

(𝑗)
0

Unlike the ATE and CATE, this represents a statement about a specific individual,

versus an expectation over a population. This can be a source of confusion when it

comes to the use of counterfactual language: It is not uncommon to estimate the

CATE and refer to this as a counterfactual or to refer to the CATE as the ITE (see

Shalit et al. (2016) and discussion in Appendix B of Liu et al. (2018)).

Note that in this chapter, we will reserve the language of counterfactuals and counter-

factual inference to refer to individual-level quantities, like 𝑌
(𝑗)
0 , 𝑌

(𝑗)
1 .

Extension to Dynamic Treatment Policies

Many of the methods which were originally developed for the simple setting described

above do not work (when applied naively) to the setting where we wish to evaluate a

dynamic treatment. In this setting, our initial action may have some intermediate effect

which influences our choice of later actions, and so on. Robins (1986) introduced a

class of general methods for adjustment in this setting, which are referred to g-methods

in the dynamic treatment regime literature. Among these, we highlight two methods

which are analogs to those discussed previously:

• First, the g-computation algorithm formula, typically referred to as the g-formula,

is a generalization of the standardization approach given in Section 2.2.1. Simply

put, the conceptual approach is to estimate the outcome under a specific policy

by simulating from a model of the overall environment. The g-formula is widely

used in epidemiology, where it is referred to as the parametric g-formula when it

involves fitting a parametric model of the environment. For instance, Lodi et al.

(2016) use this approach to evaluate a policy for HIV treatment, and Zhang et al.
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(2018) use it to evaluate a strategy for anemia management.

• Second, the class of inverse probability (IP) weighting methods, which generalize

the re-weighting methods discussed previously, such as propensity score re-

weighting (Rosenbaum and Rubin, 1983b). See (Hernan and Robbins, 2019) for

a more in-depth discussion, including the combination of IP weighting methods

with marginal structural models.

2.2.2 Model-Based Reinforcement Learning

With all of this in mind, we shift gears to a different set of literature, namely that of

reinforcement learning (RL). In contrast to the above sections, where our focus was on

evaluating a policy based on observational data, reinforcement learning has its roots

in trying to learn a policy efficiently, when given the ability to experiment freely in

an environment. We cannot hope to summarize all the extant techniques that exist

for learning and evaluation in RL, but instead highlight those which are relevant for

future chapters, as well as for understanding where our approach fits in.

Seen in relationship to the literature on dynamic treatment regimes, the reinforcement

learning literature tends to assume a particular type of causal graph, a Markov Decision

Process (MDP), which we describe in Section 2.2.2. While this assumption is shared

across techniques used to learn a policy, there is a further distinction between methods

which are model-based, which rely on learning to model the MDP, versus those that

are ‘model-free’, in the sense that they do not model the environment directly. The

techniques discussed in this chapter require a model of the environment, and thus we

will focus our discussion in Section 2.2.2 on a simple model-based approach to learning

a policy, known as Policy Iteration.

Finally, we discuss two broad types of evaluation, which have connections to the two

classes of evaluation methods discussed in the previous section: First, model-based

off-policy evaluation (MB-OPE), which can be seen as a specific instance of simulation

via the g-formula, and importance re-weighting methods such as weighted importance
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sampling (WIS), which can be seen as instances of the inverse probability weighting

approach described earlier.

Markov Decision Processes (MDPs and POMDPs)

The reinforcement learning literature tends to assume an underlying model of the world

which can be represented as having a Markov structure, meaning that the state of the

world in the future is independent of the past, given the present (observable) state.

This leads to a representation which is known as a Markov Decision Process (MDP).

This can be relaxed by assuming that there exists an underlying Markov structure,

but we may not observe it, in which case it is considered a partially observable Markov

Decision Process (POMDP). In this section we describe these general models, as a

prelude to discussing their role in both learning and evaluation.

We follow the description of Finite Markov Decision Processes (MDPs) given in Sutton

and Barto (2017), to which we refer the reader for more information. In this setting,

the decision-maker (or agent) interacts with an environment at each discrete time step.

The decision maker is presented with a state 𝑆 ∈ 𝒮, and chooses an action 𝐴 ∈ 𝒜,

which result in a new state 𝑆 ′ ∈ 𝒮 as well as a quantitative reward 𝑅 ∈ ℛ, and the

process continues until an absorbing state is reached, or until a fixed time (known as a

fixed-horizon MDP). These states, actions, and rewards are typically indexed by time,

and follow the conditional probability distribution (CPD) that governs the MDP, and

which is referred to (in this work) as the dynamics of the process:

P(𝑆𝑡+1, 𝑅𝑡|𝑆𝑡, 𝐴𝑡) (2.1)

Note that the CPD in Equation (2.1) is Markov in the sense that the next state /

reward only depend on the previous state and action, hence the moniker of a Markov

Decision Process. Furthermore, this CPD is often assumed to be invariant to the time

index, in which case we refer to this as a homogenous MDP. Finally, when the state

space 𝒮 has finite cardinality, we refer to this as a finite MDP.
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The goal of the decision-maker at time 𝑡 is typically to maximize the discounted

expected reward over the future states. This is typically denoted as follows3

𝐺𝑡 :=
∞∑︁
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1 (2.2)

In Equation (2.2), the discount factor 0 ≤ 𝛾 ≤ 1 determines the degree to which future

rewards are less valuable than immediate rewards, and this notation can be used to

cover episodes which have a finite horizon or terminal states, using the assumption

that after the horizon or a terminal state is reached, the subsequent rewards are all

zero.

Thus, the goal of the decision-maker is to choose a policy 𝜋 which maximizes the

expected reward. This policy can either be deterministic, in which case 𝜋 : 𝒮 → 𝒜

maps states to actions, or stochastic, in which case 𝜋 : 𝒮 × 𝒜 → R gives a probability

density or mass function over the set of possible actions for each state, such that∑︀
𝑎∈𝒜 𝜋(𝑠, 𝑎) = 1,∀𝑠 ∈ 𝒮. With a slight abuse of notation, we will sometimes write

𝜋(𝑎|𝑠) in place of 𝜋(𝑠, 𝑎) to convey the fact that it describes a conditional probability

distribution over actions.

An extension of this framework is to consider a partially observable MDP (POMDP),

in which we distinguish between the true state 𝑆𝑡 and the observation 𝑂𝑡 at each

time step, with the assumption that the true state 𝑆𝑡 is unobserved. In this case, the

generative model is augmented with the CPD P(𝑂𝑡|𝑆𝑡). In the case of a POMDP,

the policy may depend on the entire history up to time point 𝑡, which is denoted as

𝐻𝑡 := {𝑂1, 𝐴1, 𝑅1, . . . , 𝑂𝑡−1, 𝐴𝑡−1, 𝑅𝑡−1, 𝑂𝑡}, such that the policy is given by 𝜋(𝑎|ℎ),

with ℎ ∈ ℋ informing the action taken.

A trajectory or episode, denoted 𝜏 , is the full sequence of states, actions, and rewards,

up to the terminal state or horizon. For a MDP, given a probability distribution

over initial states P(𝑆1) and policy 𝜋(𝑎|𝑠), the probability of any given trajectory

3See equation 3.8 from Sutton and Barto (2017)
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𝜏 = {𝑆1, 𝐴1, 𝑅1, . . . , 𝑆𝑇 , 𝐴𝑇 , 𝑅𝑇} is given by

𝑝(𝜏) = P(𝑆1)
𝑇∏︁

𝑘=2

𝜋(𝐴𝑘−1|𝑆𝑘−1)P(𝑆𝑘, 𝑅𝑘|𝐴𝑘−1, 𝑆𝑘−1) (2.3)

With an analogous factorization in the case of a POMDP. Because this distribution

depends on the policy 𝜋, we denote this distribution over 𝜏 by 𝑝𝜋(𝜏), and for any

quantity which is a function of the trajectory (e.g., the total reward 𝐺), we will write

E𝜋(·) to denote the expected value over trajectories drawn from 𝑝𝜋(𝜏).

Policy Iteration Algorithm

There are a variety of techniques used to find an optimal policy in the case of a

finite MDP, but for our purposes it will be sufficient to discuss the techniques used in

(Komorowski et al., 2018), which use straightforward iterative optimization techniques

that depend on knowledge of the MDP, which can be estimated from data.

First, we need to introduce the concept of the value function for each state, which is

defined with respect to a policy 𝜋 by4

𝑣𝜋(𝑠) = E𝜋[𝐺𝑡|𝑆𝑡 = 𝑠] (2.4)

=
∑︁
𝑎

𝜋(𝑎|𝑠)
∑︁
𝑠′,𝑟

𝑝(𝑠′, 𝑟|𝑠, 𝑎) [𝑟 + 𝛾𝑣𝜋(𝑠
′)] (2.5)

With this in hand, the policy evaluation problem is to estimate the value function for

a given policy. Equation (2.5) defines a fixed point, and the following iterative update

rule is known to converge to true value function

𝑣(𝑘+1)
𝜋 (𝑠)←

∑︁
𝑎

𝜋(𝑎|𝑠)
∑︁
𝑠′,𝑟

𝑝(𝑠′, 𝑟|𝑠, 𝑎)
[︀
𝑟 + 𝛾𝑣(𝑘)𝜋 (𝑠′)

]︀
, (2.6)

where 𝑣(𝑘) is the value function at the 𝑘-th iteration. Initializing a random value

function and applying these updates until some desired tolerance is known as the

4See Equation 4.4 from Sutton and Barto (2017)
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iterative policy evaluation algorithm.

Using this technique for evaluating a policy as a subroutine, the policy iteration

algorithm improves the policy at each step, using the update rule given by

𝜋′(𝑎|𝑠)← max
𝑎

∑︁
𝑠′,𝑟

𝑝(𝑠′, 𝑟|𝑠, 𝑎) [𝑟 + 𝛾𝑣𝜋(𝑠
′)] (2.7)

To summarize, policy improvement starts with a random (deterministic) policy and

a randomly initialized value function, then alternates between policy evaluation and

policy improvement, until it finds a stable policy. For more detail, we refer the reader

to Chapters 4.1–4.3 of Sutton and Barto (2017).

Off-Policy Evaluation (OPE)

In the RL literature, it is commonly assumed that we are able to learn from experience.

That is, we can experiment with different policies until we find a policy that maximizes

our expected reward. From the perspective of healthcare applications, this is analogous

to assuming that we can freely run our own randomized experiments as we go along.

Evaluation in this setting (the on-policy setting) is conceptually straightforward,

similar to a randomized trial.

In this chapter, we deal with the setting where this type of experimentation is

not possible, e.g., for ethical and practical reasons, and we are restricted to using

observational data. This type of setting is referred to in the RL literature as off-policy

batch RL, to reflect that the policy used to generate the data (the ‘behavior’ policy) is

different from the policy we wish to evaluate (the ‘target’ or ‘evaluation’ policy) and

the fact that our dataset is restricted to a fixed batch of data.

Here we discuss two methods for off-policy evaluation, which have connections to the

classes of evaluation methods discussed in Section 2.2.1:

• Model-based off-policy evaluation (MB-OPE) involves learning a parametric

model of an underlying MDP, and then using this to estimate the value of a
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policy (see e.g., Chow et al. (2015); Hanna et al. (2017)), and can thus be seen

as a specific instance of simulation via the g-formula.

• Importance sampling (IS) (Rubinstein, 1981) is the foundation for a series of

techniques, such as weighted importance sampling (see e.g., Precup et al. (2000)).

As discussed below, these are similar to IP weighting methods.

• There exist several methods for combining these approaches, whether to generate

doubly robust estimates of performance (Jiang and Li, 2016; Bibaut et al., 2019;

Farajtabar et al., 2018), or using a mixture of IS and MB estimates (Thomas

and Brunskill, 2016; Gottesman et al., 2019a).

We take a moment here to describe the form of a basic IS estimator, as well as weighted

importance sampling (WIS), as they will be relevant for our later experimental work

replicating Komorowski et al. (2018). In general, importance sampling and related

approaches (IP weighting, inverse propensity weighting) take advantage of the following

relationship, where 𝑝, 𝑞 are two different distributions

E𝑝[𝑌 ] =

∫︁
𝑦 · 𝑝(𝑦)𝑑𝑦 =

∫︁
𝑦 · 𝑝(𝑦)

𝑞(𝑦)
𝑞(𝑦) = E𝑞

[︂
𝑝(𝑦)

𝑞(𝑦)
𝑌

]︂

This is the same basic theory that underlies all the IP weighting methods discussed

so far.5 Thus, given samples of a random variable from a distribution 𝑞, we can

approximate the expectation under the distribution 𝑝 using the weights 𝑝(𝑦𝑖)/𝑞(𝑦𝑖) for

each 𝑦𝑖, and taking a sample average E𝑝[𝑌 ] ≈ 𝑛−1
∑︀

𝑦𝑖 · 𝑝(𝑦𝑖)/𝑞(𝑦𝑖)

In an RL context, we want to estimate the expected reward of an evaluation policy

𝜋𝑒, given data sampled from an MDP under a behavior policy 𝜋𝑏. In this case the

importance ratio is straightforward. Examining the probability of any given trajectory,

given in Equation 2.3, we note that all the terms cancel in the importance sampling

ratio, except for those which involve the policy. Thus, the importance sampling ratio

5Note that this relationship is only well-defined if 𝑝(𝑦) > 0 =⇒ 𝑞(𝑦) > 0. This condition goes by
various names depending on the field: In probability theory, it is referred to as absolute continuity.
In the context of inverse propensity weighting, it is referred to as overlap or positivity. In the context
of reinforcement learning, it is referred to as coverage.
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is given by the following, where we use 𝜌1:𝑇 to denote the importance sampling ratio

over 𝑇 time steps

𝜌1:𝑇 =
𝑇∏︁
𝑖=1

𝜋𝑒(𝑎𝑡|𝑠𝑡)
𝜋𝑏(𝑎𝑡|𝑠𝑡)

Using importance sampling, we can get an unbiased and consistent estimator of the

reward under the evaluation policy using E𝜋𝑒 [𝐺] ≈ 𝑛−1
∑︀

𝑖 𝜌
(𝑖)𝐺(𝑖), where we drop

the subscript on 𝜌, use the superscript to indicate observed trajectories, and write

𝐺 as the total discounted reward. However, in practice the IS estimator can exhibit

high variance, especially if some actions are rare under the behavior policy (such that

1/𝜋𝑏(𝑎𝑡|𝑠𝑡) is very large).

Weighted importance sampling is an alternative estimator which exhibits much lower

variance, albeit at the cost of introducing some bias.6 The weighted importance

sampling estimator performs a weighted average instead of a simple average, and is

given by ∑︀
𝑖 𝜌

(𝑖) ·𝐺(𝑖)∑︀
𝑖 𝜌

(𝑖)
,

It is important to note that all variants of importance sampling are subject to the

same assumptions as any other causal analysis. That is, we typically need to estimate

the behavior policy from data, and if there is some unmeasured confounding factor

which cause our estimates of the behavior policy 𝜋𝑏 to be incorrect, then our IS or

WIS estimates will also be incorrect. This well-known fact is demonstrated in our

synthetic experiments in Section 2.6.2.

2.2.3 Structural Causal Models and Counterfactuals

When we discussed binary treatments in Section 2.2.1 we discussed potential outcomes

𝑌1, 𝑌0. In that setting, we observe one of these, but the other is unknown, representing

the theoretical counterfactual outcome. In many applications of causal inference, we

6Weighted importance sampling is still consistent, in the sense that it converges to the correct
value in the infinite data limit, with the bias asymptotically approaching zero.
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wish to estimate some general effect of an intervention, such as the conditional average

treatment effect E[𝑌1 − 𝑌0|𝑋] (e.g., Schulam and Saria, 2017; Johansson et al., 2016),

because this represent general knowledge about interventions that we can apply to

future patients. But we do not particularly care about e.g., estimating 𝑌0 given 𝑌1 for

a particular patient that we have already treated, because we cannot go back in time

and take a different action.

In a sense that we will make precise in Section 2.2.3, the CATE is a property of the

interventional distribution of 𝑌 , describing how 𝑌 changes in response to interventions

on other variables (in this case, 𝑇 ). However, we would like to go a step beyond

this, as described in Section 2.1.3. We would like to take into account what actually

happened to get a more precise estimate of what would have happened had a different

action (or set of actions) been taken. This is a counterfactual question. In essence,

we want to estimate something that is conceptually akin to the individual treatment

effect 𝑌1 − 𝑌0, rather than just the CATE.

To do so, we need to introduce the mathematical formalism of structural causal models,

which give a well-defined answer to these questions. In Section 2.2.3 we introduce the

general framework, in Section 2.2.3 we formalize the conceptual distinction between

interventional and counterfactual distributions, and in Sections 2.2.3-2.2.3 we discuss

the fundamental challenge of non-identifiability, as well as some assumptions that

make identification possible in the binary case.

Structural Causal Models (SCMs)

As promised, we review the concept of structural causal models, and encourage the

reader to refer to Pearl (2009) (Section 7.1) and Peters et al. (2017) for more details. A

word regarding notation: As a general rule throughout, we refer to a random variable

with a capital letter (e.g., 𝑋), the value it obtains as a lowercase letter (e.g., 𝑋 = 𝑥),

and a set of random variables with boldface font (e.g., X = {𝑋1, . . . , 𝑋𝑛}). Consistent

with Peters et al. (2017) and Buesing et al. (2019), we write 𝑃𝑋 for the distribution of

a variable 𝑋, and 𝑝𝑥 for the density function.
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𝑌𝑇

X

𝑌𝑇

X

𝑈𝑡

𝑈𝑥
𝑈𝑦

Figure 2-5: Example translation of a causal graph into the corresponding Structural
Causal Model. Left: Causal DAG on an outcome 𝑌 , covariates 𝑋, and treatment 𝑇 .
Given this graph, we can perform do-calculus (Pearl, 2009) to estimate the impact of
interventions such as E[𝑌 |𝑋, 𝑑𝑜(𝑇 = 1)]−E[𝑌 |𝑋, 𝑑𝑜(𝑇 = 0)], known as the Conditional
Average Treatment Effect (CATE). Right: All observed random variable are assumed
to be generated via structural mechanisms 𝑓𝑥, 𝑓𝑡, 𝑓𝑦 via independent latent factors 𝑈
which cannot be impacted via interventions. Following convention of Buesing et al.
(2019), calculated values are given by black boxes (and in this case, are observed),
observed variables are given in grey, and unobserved variables are given in white.

Definition 2.1 (Structural Causal Model (SCM)). A structural causal modelℳ consists

of a set of independent random variables U = {𝑈1, . . . , 𝑈𝑛} with distribution 𝑃 (U), a

set of functions F = {𝑓1, . . . , 𝑓𝑛}, and a set of variables X = {𝑋1, . . . , 𝑋𝑛} such that

𝑋𝑖 = 𝑓𝑖(PA𝑖, 𝑈𝑖),∀𝑖, where PA𝑖 ⊆ X ∖ 𝑋𝑖 is the subset of X which are parents of

𝑋𝑖 in the causal DAG 𝒢. As a result, the prior distribution 𝑃 (U) and functions F

determine the distribution 𝑃ℳ
𝑋 .

As a motivating example to simplify exposition, we will assume the causal graphs

(and corresponding SCM) given in Figure 2-5. An astute reader will recognize this as

the same binary setting discussed previously, representing (for example) the effect of a

medical treatment 𝑇 on an outcome 𝑌 in the presence of confounding variables X.

Interventional vs. Counterfactual Distributions

The SCMℳ defines a complete data-generating processes, which entails the observa-

tional distribution 𝑃 (X, 𝑌, 𝑇 ). It also defines an interventional distribution, describing

the effect of any possible intervention.

Definition 2.2 (Interventional Distribution). Given an SCMℳ, an intervention 𝐼 =

𝑑𝑜
(︁
𝑋𝑖 := 𝑓(PÃ𝑖, �̃� 𝑖)

)︁
corresponds to replacing the structural mechanism 𝑓𝑖(PA𝑖, 𝑈𝑖)

with 𝑓 𝑖(PÃ𝑖, 𝑈𝑖). This includes the concept of atomic interventions, where we may
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write more simply 𝑑𝑜(𝑋𝑖 = 𝑥). The resulting SCM is denotedℳ𝐼 , and the resulting

distribution is denoted 𝑃ℳ;𝐼 .

For instance, suppose that 𝑌 corresponds to a favorable binary outcome, such as

5-year survival, and 𝑇 corresponds to a treatment. Then several quantities of interest

in causal effect estimation, including (but not limited to) the ATE and the CATE,

are defined by the interventional distribution, which is forward-looking, telling us

what might be expected to occur if we applied an intervention. However, we can also

define the counterfactual distribution which is retrospective, telling us what might

have happened had we acted differently. For instance, we might ask: Having given the

drug and observed that 𝑌 = 1 (survival), what would have happened if we had instead

withheld the drug? This is formalized in an SCM as follows:

Definition 2.3 (Counterfactual Distribution). Given an SCM ℳ and an observed

assignment X = x over any set of observed variables, the counterfactual distribution

𝑃
ℳ|X=x;𝐼
𝑋 corresponds to the distribution entailed by the SCMℳ𝐼 using the posterior

distribution 𝑃 (U|X = x).

Explicitly, given an SCMℳ, the counterfactual distribution can be estimated by first

inferring the posterior over latent variables, e.g., 𝑃 (U|X = x, 𝑇 = 1, 𝑌 = 1) in our

running example, and then passing that distribution through the structural mechanisms

in a modifiedℳ𝐼 (e.g., 𝐼 = 𝑑𝑜(𝑇 = 0)) to obtain a counterfactual distribution over

any variable7. In this way, we make precise the meaning of several terms we will

use in this chapter. When we say counterfactual inference, we are referring to this

process of obtaining a counterfactual distribution. Similarly, we sometimes use the

term counterfactual posterior to refer to the counterfactual distribution, to reflect the

fact that it is simply posterior inference in a particular type of causal model.

7This process is called abduction, action, and prediction in Pearl (2009)
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Non-Identifiability of Binary SCMs

So, given an SCM ℳ, we can compute an answer to our counterfactual question:

Having given the drug and observed that 𝑌 = 1 (survival), what would have happened

if we had instead withheld the drug? In the binary case, this corresponds to the

Probability of Necessity (PN) (Pearl, 2009; Dawid et al., 2015), because it represents

the probability that the exposure 𝑇 = 1 was necessary for the outcome.

Intuitively, this is impossible to answer with certainty, even though we may ask

ourselves these types of questions frequently in the real world. For instance, in medical

malpractice, establishing fault requires just such a counterfactual claim, showing that

an injury would not have occurred “but for” the breach in the standard of care (Bal,

2009; Encyclopedia, 2008).

Mathematics matches our intuition in this case: The answer to the question is not

identifiable without further assumptions, a general property of counterfactual inference.

That is, there are multiple SCMs which are all consistent with the interventional

distribution, but which produce different counterfactual estimates of quantities like

the Probability of Necessity (Pearl, 2009).

Monotonicity Assumption for Identification of Binary SCMs

Nonetheless, there are plausible (though untestable) assumptions we can make that

identify counterfactual distributions. Consider our intuition in the following case:

Suppose that a non-smoker develops lung cancer. What would have happened if they

had (counterfactually) smoked a pack a day? Our intuition is that, at the very least,

it would not have helped, and they would have developed the cancer regardless, all else

being equal. This type of intuition is formalized mathematically as the monotonicity

assumption (Pearl, 2000; Tian and Pearl, 2000), and is in fact sufficient to identify the

Probability of Necessity and related quantities in epidemiology (Cuellar and Kennedy,

2018; Yamada and Kuroki, 2017).

Definition 2.4 (Monotonicity). A SCM of a binary variable 𝑌 is monotonic relative to
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a binary variable 𝑇 if and only if it has the following property8,9: E[𝑌 |𝑑𝑜(𝑇 = 𝑡)] ≥

E[𝑌 |𝑑𝑜(𝑇 = 𝑡′)] =⇒ 𝑓𝑦(𝑡, 𝑢) ≥ 𝑓𝑦(𝑡
′, 𝑢), ∀𝑢. We can write equivalently that the

following event never occurs, in the case where E[𝑌 |𝑑𝑜(𝑇 = 1)] ≥ E[𝑌 |𝑑𝑜(𝑇 = 0)]:

𝑌𝑑𝑜(𝑇=1) = 0 ∧ 𝑌𝑑𝑜(𝑇=0) = 1. Conversely for E[𝑌 |𝑑𝑜(𝑇 = 1)] ≤ E[𝑌 |𝑑𝑜(𝑇 = 0)], the

following event never occurs: 𝑌𝑑𝑜(𝑇=1) = 1 ∧ 𝑌𝑑𝑜(𝑇=0) = 0.

In particular, this assumption restricts the class of possible SCMs to those which

all yield equivalent counterfactual distributions over 𝑌 . For instance, the following

SCM exhibits the monotonicity property, and replicates any interventional distribution

where 𝑔(𝑥, 𝑡) = E[𝑌 |𝑋 = 𝑥, 𝑑𝑜(𝑇 = 𝑡)]:

𝑌 = 1 {𝑈𝑦 ≤ 𝑔(𝑥, 𝑡)} , 𝑈 ∼ Unif(0, 1)

In Figure 2-6 we demonstrate how this plays out for a binary treatment and outcome.

There is a wide range of literature in statistics, epidemiology, and machine learning

which makes use of this assumption: In epidemiology, it implicitly appears in early

work on estimating quantities like the ‘relative risk ratio’ (Miettinen, 1974), which

are often imbued with causal interpretations (Pearl, 2009; Yamada and Kuroki, 2017).

Formalizing the assumption of monotonicity, required to correctly impute causal

meaning to these quantities, is covered in Balke and Pearl (1994); Pearl (2000);

Tian and Pearl (2000). More recent work in epidemiology uses the assumption of

monotonicity explicitly, (e.g., to estimate the counterfactual effect of water sanitation

in Kenya in Cuellar and Kennedy, 2018), and there has been ample discussion and

debate regarding how this reasoning could apply (in principle) to legal cases, such

as litigation around the toxic effects of drugs (Dawid et al., 2016). In statistics,

monotonicity of treatment with respect to an instrumental is a core assumption of

8We could also write this property as conditional on 𝑋
9This definition differs slightly from the presentation of monotonicity in Pearl (2009), where

𝑓𝑦(𝑡, 𝑢) being monotonically increasing in 𝑡 is given as the property, with the testable implication
that E[𝑌 |𝑑𝑜(𝑇 = 𝑡)] ≥ E[𝑌 |𝑑𝑜(𝑇 = 𝑡′)] for 𝑡 ≥ 𝑡′. Because the direction of monotonicity is only
compatible with the corresponding direction of the expected interventional outcomes, we fold this into
the definition of monotonicity directly, to align with our later definition of counterfactual stability.
Also note that we use the notation 𝑌𝑑𝑜(𝑇=𝑡) := 𝑓𝑦(𝑡, 𝑢) here
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This SCM has the monotonicity property 
(Pearl 20003), which identifies 
counterfactuals in the binary case

𝑋 𝑌

𝑇𝑈𝑡 𝑈𝑦

𝑈𝑥𝑋

𝑇

𝑌

𝑈𝑦 ∼ 𝑈𝑛𝑖𝑓 0, 1 ,

𝑌𝑡 = 1 𝑈𝑦 ≤ 𝑝𝑡
where 𝑝𝑡 ≔ 𝐸 𝑌 𝑑𝑜 𝑇 = 𝑡 , 𝑋 ]

Example: Monotonicity assumption for binary outcomes

2 Intervene to set 𝑇 = 𝑏

𝑃(𝑈𝑦)

10

𝑌 = 1 𝑌 = 0

𝑝𝑎

Infer the posterior of 𝑈𝑦
given 𝑋, 𝑌𝑎 = 1

1

Predict counterfactual outcome3

𝑃(𝑈𝑦)

10
𝑝𝑏

Treatment A was given, and we observed 
𝑌𝑎 = 1.  What would have happened if 
Treatment B had been given?

𝑃(𝑈𝑦 ≤ 𝑝𝑏 ∣ 𝑈𝑦 ≤ 𝑝𝑎) = 1

implies 𝑌𝑏 = 1

Figure 2-6: Example of a structural causal model which satisfies the monotonicity
assumption, and the process of performing counterfactual inference.

instrumental variable analysis (Imbens and Angrist, 1994). Finally, the monotonicity

assumption has been used recently in the machine learning community by Kallus

(2019) to classify treatment non-responders.

2.3 Counterfactual Decomposition of Reward

2.3.1 Viewing MDPs and POMDPs as SCMs

In this section we will describe how to reformulate MDPs and POMDPs as structural

causal models, retaining their implied interventional distributions while enabling the

counterfactual inference procedure described previously. Critically, our results are not

limited to MDPs and POMDPs, as any graphical model can be reformulated as a

structural causal model. Thus, our results apply more generally wherever e.g., the

parametric g-formula is used, but we focus primarily on MDPs and POMDPs in this
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𝑈𝑠1

𝑆1

𝐴1

𝑈𝑎1

𝑆2

𝑈𝑠2

𝐴2

𝑈𝑎2

𝑆3

𝑈𝑠3

Figure 2-7: SCM for a MDP, with states 𝑆𝑡 and actions 𝐴𝑡, where the action is
generated via the mechanism 𝜋(𝑈𝑎, 𝑆𝑡), or 𝜋(𝑆𝑡) if the policy is deterministic. Rewards
are not shown for simplicity. Black squares are functions of their parents in the graph,
and are observed, while white circles are unobserved random variables.

chapter. Note that we will abuse language slightly throughout this thesis, referring

to both (a) a structural causal model over all observed variables, as well as (b) the

individual mechanisms for each variable (e.g., 𝑆𝑡+1 = 𝑓𝑠(𝑠𝑡, 𝑎𝑡, 𝑢𝑠𝑡+1)) as structural

causal models.

For a MDP, we can write the states, actions, and rewards as deterministic functions of

their parents in the MDP (e.g., for any individual state, these are the previous state

and action), as well as an independent exogenous variable. This is shown visually in

Figure 2-7. If we are given a deterministic policy to evaluate, then the only SCMs

and exogenous variables that we need to consider modelling (for the counterfactual)

are those which impact the state transitions (as well as the rewards, if they are not a

deterministic function of state). For continuous state-space models, we will need a

continuous SCM, as discussed in Section 2.5, and for discrete state-space models (e.g.,

a finite MDP), we will need a categorical SCM, as discussed in Section 2.4.

Similarly, as noted in Buesing et al. (2019), we can view an episodic Partially Ob-

servable Markov Decision Process (POMDP) as an SCM, as shown in Figure 2-8,

where 𝑆𝑡 corresponds to states, 𝐴𝑡 corresponds to actions, 𝑂𝑡 corresponds to ob-
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𝑈𝑜1

𝑈𝑠1

𝑂1 𝑈𝑎1

𝐻1

𝐴1 𝑈𝑜2

𝑆2

𝑈𝑠2

𝑂2 𝑈𝑎2

𝐻2

𝐴2

𝑆3

𝑈𝑠3

Figure 2-8: SCM for a POMDP, slightly modified from a similar figure in Buesing
et al. (2019), with initial state 𝑈𝑠1 = 𝑆1, states 𝑆𝑡, and histories 𝐻𝑡, where the action
is generated via the mechanism 𝜋(𝑈𝑎, 𝐻𝑡), or 𝜋(𝐻𝑡) if the policy is deterministic.
Rewards are captured as part of observed variables 𝑂 for simplicity. Black and grey
squares are functions of their parents in the graph, with black squares being observed
and grey squares being unobserved. White circles still represent unobserved variables.

servable quantities (including reward 𝑅𝑡), 𝐻𝑡 contains history up to time 𝑡, i.e.,

𝐻𝑡 = {𝑂1, 𝐴1, . . . 𝐴𝑡−1, 𝑂𝑡}, and stochastic policies are given by 𝜋(𝑎𝑡|ℎ𝑡).

Thus, the only remaining task required to convert a MDP or POMDP into an SCM is

to define the individual mechanisms in such a way that the conditional probability

distributions are preserved. This will be discussed in more detail in Sections 2.4-2.5.

For now, we will define some additional notation10 that will prove useful later, and then

discuss in Section 2.3.2 why this reformulation as an SCM is useful for understanding

the model-based estimates of reward that a MDP or POMDP might produce. In the

context of reinforcement learning with POMDPs, we are typically concerned with

estimating the expected reward of a proposed policy �̂�. To formalize notation, a given

policy 𝜋 implies a density over trajectories 𝜏 ∈ 𝒯 = (𝑆1, 𝑂1, 𝐴1, . . . , 𝐴𝑇−1, 𝑆𝑇 , 𝑂𝑇 ),

which we denote as 𝑝𝜋(𝜏), and we let 𝑅(𝜏) be the total reward of a trajectory 𝜏 . For

ease of notation, we sometimes write E�̂� and E𝑜𝑏𝑠 to indicate an expectation taken

10We also re-define some notation we used previously, for which we apologize profusely to the
reader. From now on 𝜏 is a trajectory, not the ATE.
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with respect to 𝜏 ∼ 𝑝�̂� and 𝜏 ∼ 𝑝𝜋𝑜𝑏𝑠 respectively, where �̂� refers to the proposed

(‘target’ or ‘evaluation’) policy, and 𝜋𝑜𝑏𝑠 to the observed (‘behavior’) policy.

2.3.2 Counterfactual Decomposition of Reward

Model-Based OPE as CATE Estimation

If we wish to compare the performance of a proposed policy �̂� and the observed policy

𝜋𝑜𝑏𝑠, we might compare the difference in expected reward. The expected reward under

𝜋𝑜𝑏𝑠 can be estimated in this case using observed trajectories, without a model of the

environment. The difference in expected reward is conceptually similar to the average

treatment effect (ATE) of applying the proposed vs observed policy, and we denote it

as 𝛿:

𝛿 := E�̂�[𝑅(𝜏)]− E𝑜𝑏𝑠[𝑅(𝜏)] (2.8)

However, it may be useful to drill down into specific cases: Perhaps there are certain

environments, for instance, in which the proposed policy would perform better or

worse than the observed policy. One natural decomposition is to condition on the first

observed state to estimate a conditional expected reward, e.g.,

𝛿𝑜 := E�̂�[𝑅(𝜏)|𝑂1 = 𝑜]− E𝑜𝑏𝑠[𝑅(𝜏)|𝑂1 = 𝑜] (2.9)

Equation 2.9 corresponds conceptually to CATE estimation, where we condition only

on pre-treatment information (in this case, 𝑂1, which occurs before the first action).

However, we can go no further than that without a structural causal model, as we

need a way to ‘condition’ on the entire observed trajectory.

Counterfactual OPE as ITE Estimation

Given a structural causal model, we can use information from the entire trajectory

to decompose Equation (2.9) further, over actual trajectories that we have observed,
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to highlight differences between the observed and proposed policy. With an SCM in

hand, we can decompose Equation 2.9 further as follows:

Lemma 2.1 (Counterfactual Decomposition of Expected Reward). Let trajectories 𝜏

be drawn from 𝑝𝜋𝑜𝑏𝑠. Let 𝜏�̂� be a counterfactual trajectory, drawn from our posterior

distribution over the exogenous 𝑈 variables under the new policy �̂�. Note that under

the SCM, 𝜏�̂� is a deterministic function of the exogenous 𝑈 variables, so we can write

𝜏�̂�(𝑢) to be explicit:

E�̂�[𝑅(𝜏)|𝑂1 = 𝑜1]

=

∫︁
𝜏

𝑝𝜋𝑜𝑏𝑠(𝜏 |𝑂1 = 𝑜1)E𝑢∼𝑝𝜋𝑜𝑏𝑠 (𝑢|𝜏)[𝑅(𝜏�̂�(𝑢))]𝑑𝜏

Proof. This proof is similar to the proof of Lemma 1 from (Buesing et al., 2019), but

is spelled out here for the sake of clarity. Recall that the distribution of noise variables

𝑈 is the same for every intervention / policy. Thus, 𝑝𝜋𝑜𝑏𝑠(𝑢) = 𝑝�̂�(𝑢) = 𝑝(𝑢). We will

write 𝑝′ and �̂� for 𝑝𝜋𝑜𝑏𝑠 and 𝑝�̂� respectively to simplify notation.

Furthermore, recall that all variables are a deterministic function of their parents in

the causal DAG implied by the SCM. Most importantly, this means that the trajectory

𝜏 is a deterministic function of the policy 𝜋 and the exogenous variables 𝑈 . With that

in mind, let 𝜏�̂�(𝑢) indicate the trajectory 𝜏 as a deterministic function of �̂� and 𝑢. We

will occasionally use indicator functions to indicate whether or not a deterministic

value is compatible with the variables that determine it, e.g., 1 {𝜏 |𝑢, 𝜋} is equivalent

to the indicator for 1 {𝜏 = 𝜏𝜋(𝑢)}. Note that the first observation is independent of

the policy, and is just a function of the exogenous 𝑈 , so we will write 1 {𝑜1|𝑢} in that
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case. For simplicity, we will remove the conditioning on 𝑂1 to start with:

E�̂�[𝑅(𝜏)]

=

∫︁
𝑅(𝜏�̂�(𝑢)) · �̂�(𝑢)𝑑𝑢 (2.10)

=

∫︁
𝑅(𝜏�̂�(𝑢)) · 𝑝′(𝑢)𝑑𝑢 (2.11)

=

∫︁
𝑅(𝜏�̂�(𝑢)) ·

(︂∫︁
𝑝′(𝜏, 𝑢)𝑑𝜏

)︂
𝑑𝑢 (2.12)

=

∫︁ ∫︁
𝑅(𝜏�̂�(𝑢)) · 𝑝′(𝑢|𝜏) · 𝑝′(𝜏)𝑑𝑢𝑑𝜏 (2.13)

= E𝜏∼𝑝′

[︂∫︁
𝑅(𝜏�̂�(𝑢)) · 𝑝′(𝑢|𝜏)𝑑𝑢

]︂
(2.14)

= E𝜏∼𝑝′E𝑢∼𝑝′(𝑢|𝜏) [𝑅(𝜏�̂�(𝑢))] (2.15)

=

∫︁
𝜏

𝑝𝜋𝑜𝑏𝑠(𝜏)E𝑢∼𝑝′(𝑢|𝜏) [𝑅(𝜏�̂�(𝑢))] 𝑑𝜏 (2.16)

In step (2.10) we are just using the definition of the expectation under �̂�, along with

the notation 𝜏�̂�(𝑢) to indicate that the trajectory is a deterministic function of the

exogenous 𝑢 and the policy �̂�. In step (2.11) we replace �̂�(𝑢) with 𝑝′(𝑢) because

they are equivalent, as noted earlier. In step (2.12) we expand 𝑝′(𝑢) over possible

trajectories 𝜏 arising from the observed policy. In step (2.13) we rearrange terms

and swap the order of the integral, and in step (2.14) we rewrite the outer integral

as an expectation. In step (2.15) we further condense notation, and then expand in

step (2.16) to match the notation in the Lemma. If we introduce the conditioning on
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𝑂1, we see that it is substantively the same.

E�̂�[𝑅(𝜏)|𝑜1]

=

∫︁
𝑅(𝜏�̂�(𝑢)) · 1 {𝑜1|𝑢} · �̂�(𝑢)𝑑𝑢 (2.17)

=

∫︁
𝑅(𝜏�̂�(𝑢)) · 1 {𝑜1|𝑢} · 𝑝′(𝑢)𝑑𝑢 (2.18)

=

∫︁
𝑅(𝜏�̂�(𝑢)) · 𝑝′(𝑢|𝑜1)𝑑𝑢 (2.19)

=

∫︁
𝑅(𝜏�̂�(𝑢)) ·

(︂∫︁
𝑝′(𝜏, 𝑢|𝑜1)𝑑𝜏

)︂
𝑑𝑢 (2.20)

=

∫︁ ∫︁
𝑅(𝜏�̂�(𝑢)) · 𝑝′(𝑢|𝜏) · 𝑝′(𝜏 |𝑜1)𝑑𝑢𝑑𝜏 (2.21)

=

∫︁
𝑝′(𝜏 |𝑜1)

[︂∫︁
𝑅(𝜏�̂�(𝑢)) · 𝑝′(𝑢|𝜏)𝑑𝑢

]︂
𝑑𝜏 (2.22)

=

∫︁
𝜏

𝑝′(𝜏 |𝑜1)E𝑢∼𝑝′(𝑢|𝜏)[𝑅(𝜏�̂�(𝑢))]𝑑𝜏 (2.23)

The main difference in this case is that is just that we carry the indicator into the

prior on 𝑈 at step (2.19), which we can do because 𝑂1 does not depend on the policy

that is applied. Note that Equation (2.23) matches the statement of the Lemma.

Corollary 2.1 (Counterfactual Decomposition of 𝛿𝑜).

𝛿𝑜 := E�̂�[𝑅(𝜏)|𝑂1 = 𝑜1]− E𝑜𝑏𝑠[𝑅(𝜏)|𝑂1 = 𝑜1]

=

∫︁
𝜏

𝑝𝜋𝑜𝑏𝑠(𝜏 |𝑂1 = 𝑜1)E𝑢∼𝑝𝜋𝑜𝑏𝑠 (𝑢|𝜏)[𝑅(𝜏�̂�(𝑢))−𝑅(𝜏)]𝑑𝜏
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Proof. By Lemma 2.1, we have it that

𝛿𝑜 := E�̂�[𝑅(𝜏)|𝑂1 = 𝑜]− E𝑜𝑏𝑠[𝑅(𝜏)|𝑂1 = 𝑜]

=

∫︁
𝜏

𝑝′(𝜏 |𝑜1)E𝑢∼𝑝′(𝑢|𝜏)[𝑅(𝜏�̂�(𝑢))]𝑑𝜏

−
∫︁
𝜏

𝑝′(𝜏 |𝑜1)E𝑢∼𝑝′(𝑢|𝜏)[𝑅(𝜏𝜋𝑜𝑏𝑠
(𝑢))]𝑑𝜏

=

∫︁
𝜏

𝑝𝜋𝑜𝑏𝑠(𝜏 |𝑂1 = 𝑜1)E𝑢∼𝑝𝜋𝑜𝑏𝑠 (𝑢|𝜏)[𝑅(𝜏�̂�(𝑢))−𝑅(𝜏)]𝑑𝜏

Note that in the last step, we recognize that P𝑢∼𝑝′(𝑢|𝜏)[𝜏𝜋𝑜𝑏𝑠
(𝑢) = 𝜏 ] = 1, because the

posterior density over 𝑢 is zero for all 𝑢 such that 𝜏𝜋𝑜𝑏𝑠
(𝑢) ̸= 𝜏 .

Corollary 2.1 implies that we can decompose the expected difference in reward between

the policies into differences on observed episodes over counterfactual trajectories, if

the SCM is correct. In the context of Buesing et al. (2019), this fact is used to argue

that counterfactuals approximate draws from the interventional distribution, since

efficient estimation of the latter is their ultimate goal.

In our case this fact serves an additional purpose: It theoretically motivates the

use of counterfactuals as a model-checking tool. In principle, if the SCM is correct,

then the counterfactuals can be used to identify how observed episodes contribute to

overall estimates of reward, and thus ground the model-based conclusions in specific

counterfactual claims that can be vetted by domain experts. In practice, we consider

this decomposition a heuristic, as we do not believe the SCM is necessarily correct.

That said, our empirical work in Sections 2.6-2.7 gives anecdotal evidence that this

equality holds approximately in some situations when the learned MDP is not correct.

2.4 Gumbel-Max SCMs for Categorical Variables

In the previous chapter, we illustrated how to convert a model of the environment

into a structural causal model, as well as the potential benefits of doing so for the

purpose of decomposing model-based rewards into counterfactual claims. All that

118



remained was to specify the specific causal mechanisms for each of the variables in the

respective SCMs.

However, it is at this point that we face a non-identifiability issue: Multiple SCMs

can all entail the same interventional distribution, but a different set of counterfactual

trajectories, and therefore a different decomposition under Lemma 2.1. This motivates

the theoretical work of this chapter: We must make our assumptions carefully, as

they cannot be tested by data, so it is worth investigating which assumptions are

consistent with our causal intuition. We illustrate this non-identifiability (with respect

to categorical distributions) in Section 2.4.1. Then we introduce the condition of

counterfactual stability (in Section 2.4.2) for a discrete distribution on 𝑘 categories,

and show that it is compatible with the monotonicity condition of Pearl (2000) in

that it implies the monotonicity assumption when 𝑘 = 2. Then we introduce the

Gumbel-Max SCM for discrete variables in Section 2.4.3, and prove that it satisfies the

counterfactual stability condition, and in Section 2.4.4 describe an intuitive connection

to discrete choice models.

2.4.1 Non-Identifiability of Categorical SCMs

We will first illustrate that the non-identifiability of counterfactual distributions

applies to categorical distributions as well. Consider the categorical distribution

over 𝑘 categories, e.g., the transition kernel 𝑃 (𝑆 ′|𝑆 = 𝑠,𝐴 = 𝑎) over discrete states.

Let 𝑝𝑖 := 𝑃 (𝑆 ′ = 𝑖|𝑆 = 𝑠,𝐴 = 𝑎). There are multiple ways that we could sample

from this distribution with a structural mechanism 𝑓 and latent variables 𝑈 . For

instance, we could define an ordering ord on the categories, and define 𝑘 intervals

of [0, 1] as [0, 𝑝ord(1)), [𝑝ord(1),
∑︀2

𝑖=1 𝑝ord(𝑖)), . . . , [
∑︀𝑘−1

𝑖=1 𝑝ord(𝑖), 1]. Then we could draw

𝑈 ∼ 𝑈𝑛𝑖𝑓(0, 1), and return the interval that 𝑢 falls into.

However, different permutations ord will yield equivalent interventional distributions

but can imply different counterfactual distributions. For instance, consider the following

example, shown visually in in Figure 2-9. Let 𝑘 = 4 and 𝑝1 = 𝑝2 = 0.25, 𝑝3 = 0.3, 𝑝4 =
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0.2 and consider an intervention 𝐴 = 𝑎′ which defines a different distribution 𝑝′1 =

0, 𝑝′2 = 0.25, 𝑝′3 = 0.25, 𝑝′4 = 0.5. Now consider two permutations, ord = [1, 2, 3, 4] and

ord′ = [1, 2, 4, 3], and the counterfactual distribution under 𝑎′ given that 𝑆 ′ = 2, 𝐴 = 𝑎.

In each case, posterior inference over 𝑈 implies that 𝑃 (𝑈 |𝑆 ′ = 2, 𝑆 = 𝑠,𝐴 = 𝑎) ∼

𝑈𝑛𝑖𝑓 [0.25, 0.5). However, under ord this implies the counterfactual 𝑆 ′ = 3, while

under ord′ it implies 𝑆 ′ = 4.

Counterfactual Question

Let 𝑆′ = 2, 𝑆 = 𝑠, 𝐴 = 𝑎;
What would have happened 
if 𝐴 = 𝑎′ ?

Procedure

2 Intervene to 
set 𝐴 = 𝑎′

3 Predict 
counterfactual

𝑆′ 𝑝(𝑆′ ∣ 𝑠, 𝑎) 𝑝(𝑆′ ∣ 𝑠, 𝑎′)

1 0.25 0

2 0.25 0.25

3 0.3 0.25

4 0.2 0.5

Interventional CPD

Infer the 
posterior of 𝑈

1

𝑃(𝑈)

10

1 2 3 4

10

1 2 34

𝑃(𝑈)

1
2

10

2 3 4

10

2 34

3

𝑺′ = 𝟑

𝑺′ = 𝟒

Different, based 
on the ordering!

Figure 2-9: Example of non-identifiability of categorical counterfactual outcomes.
The table on the bottom right illustrates the difference in the conditional probability
distribution (the ‘interventional’ distribution) as a function of actions 𝑎 versus 𝑎′.
The procedure is illustrated in the middle, where the two rows represent two possible
orderings (ord and ord’) both of which define a causal mechanism 𝑆 ′ = 𝑓(𝑆,𝐴,𝑈)
with 𝑈 ∼ 𝑈𝑛𝑖𝑓(0, 1) that replicates the interventional probability distribution. From
left to right, we see the application of counterfactual inference: (1) Infer the posterior
of 𝑈 , represented by the red box, (2) intervene to set 𝐴 = 𝑎′, and (3) predict the
counterfactual by evaluating under the posterior of 𝑈 . These two SCMs produce
different counterfactual outcomes, with the outcome of 𝑆 ′ = 3 being particularly
unintuitive, since the interventional probability was reduced under the shift from 𝑎 to
𝑎′.

Note that in this example, the mechanism 𝑓ord implied a non-intuitive counterfactual

outcome: Even though the intervention 𝐴 = 𝑎′ lowered the probability of 𝑆 ′ = 3

(relative to the probability under 𝐴 = 𝑎) without modifying the probability of 𝑆 ′ = 2,

it led to a delta distribution in the counterfactual posterior on 𝑆 ′ = 3. Since all choices

for ord imply the same interventional distribution, there is no way to distinguish

between these mechanisms with data.

This motivates the following sections, where we posit a desirable property for categorical
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SCMs to possess, and which rules out this result (among others) and is compatible

with the notion of monotonicity introduced by Pearl (2000). We then demonstrate that

a mechanism based on sampling independent Gumbel variables satisfies this property,

which motivates the use of the Gumbel-Max SCM for performing counterfactual

inference in this setting.

2.4.2 Counterfactual Stability Property

We now introduce our first contribution, the desired property of counterfactual stability

for categorical SCMs with 𝑘 categories, laid out in in Definition 2.5. This property

would rule out the non-intuitive counterfactual implications of 𝑓ord in Section 2.4.1.

We then demonstrate that this condition implies the monotonicity condition when

𝑘 = 2.

First, with apologies to the reader, we will once again introduce some notation. Denote

the interventional probability distribution of a categorical variable 𝑌 with 𝑘 categories

as 𝑃ℳ;𝐼(𝑌 ) = p under intervention 𝐼, and p′ under intervention 𝐼 ′, where p,p′ ∈ Δ𝑘,

the probability simplex over 𝑘 categories. To simplify notation for interventional

outcomes, we will sometimes denote by 𝑌𝐼 the observed outcome 𝑌 under intervention

𝐼, and denote by 𝑌𝐼′ the counterfactual outcome under intervention 𝐼 ′, such that 𝑝𝑖 and

𝑃 (𝑌𝐼 = 𝑖) are both equivalent to 𝑃ℳ;𝐼(𝑌 = 𝑖), and similarly for 𝐼 ′. For counterfactual

outcomes, we will write 𝑃ℳ|𝑌𝐼=𝑖;𝐼′(𝑌 ) for the counterfactual distribution of 𝑌 under

intervention 𝐼 ′ given that we observed 𝑌 = 𝑖 under the intervention 𝐼.

Definition 2.5 (Counterfactual Stability). A SCM of a categorical variable 𝑌 satisfies

counterfactual stability if it has the following property: If we observe 𝑌𝐼 = 𝑖, then for

all 𝑗 ̸= 𝑖, the condition
𝑝′𝑖
𝑝𝑖
≥ 𝑝′𝑗

𝑝𝑗
implies that 𝑃ℳ|𝑌𝐼=𝑖;𝐼′(𝑌 = 𝑗) = 0. That is, if we

observed 𝑌 = 𝑖 under intervention 𝐼, then the counterfactual outcome under 𝐼 ′ cannot

be equal to 𝑌 = 𝑗 unless the multiplicative change in 𝑝𝑖 is less than the multiplicative

change in 𝑝𝑗.

Corollary 2.2. If ℳ is a SCM which satisfies counterfactual stability, then if we
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observe 𝑌𝐼 = 𝑖, and
𝑝′𝑖
𝑝𝑖
≥ 𝑝′𝑗

𝑝𝑗
holds for all 𝑗 ̸= 𝑖, then 𝑃ℳ|𝑌𝐼=𝑖;𝐼′(𝑌 = 𝑖) = 1.

This definition and corollary encode the following intuition about counterfactuals: If

we had taken an alternative action that would have only increased the probability of

𝑌 = 𝑖, without increasing the likelihood of other outcomes, then the same outcome

would have occurred in the counterfactual case. Moreover, in order for the outcome

to be different under the counterfactual distribution, the relative likelihood of an

alternative outcome must have increased relative to that of the observed outcome.

The connection to monotonicity is given in Theorem 2.1, whose proof is deferred to

Section 2.4.5.

Theorem 2.1. Let 𝑌 = 𝑓𝑦(𝑡, 𝑢) be the SCM for a binary variable 𝑌 , where 𝑇 is also a

binary variable. If this SCM satisfies the counterfactual stability property, then it also

satisfies the monotonicity property with respect to 𝑇 .

2.4.3 Gumbel-Max SCMs Satisfy Counterfactual Stability

Unlike monotonicity with binary outcomes and treatments, the condition of counterfac-

tual stability does not obviously imply any closed-form solution for the counterfactual

posterior. Thus, we introduce a specific SCM which satisfies this property, and discuss

how to sample from the posterior distribution in a straightforward fashion. We start

by recalling the following fact, known as the Gumbel-Max trick (Luce, 1959; Yellott,

1977; Yuille. and L, 2011; Hazan and Jaakkola, 2012; Maddison et al., 2014; Hazan

et al., 2016; Maddison et al., 2017):

Definition 2.6 (Gumbel-Max Trick). We can sample from a categorical distribution

with 𝑘 categories as follows, where �̃�𝑖 is the unnormalized probability 𝑃 (𝑌 = 𝑖): First,

draw 𝑔1, . . . , 𝑔𝑘 from a standard Gumbel, which can be achieved by drawing 𝑢1, . . . , 𝑢𝑘

iid from a Unif(0, 1), and assigning 𝑔𝑖 = − log(− log 𝑢𝑖). Then, set the outcome 𝑗 by

taking argmax𝑗 log �̃�𝑗 + 𝑔𝑗.

Clearly, we can perform this for any categorical distribution, e.g., the transition

distribution 𝑝𝑖 = 𝑃 (𝑆 ′ = 𝑖|𝑆,𝐴); In particular, for any discrete variable 𝑌 whose
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parents in a causal DAG are denoted X, a Gumbel-Max SCM assumes the following

causal mechanism, where g = (𝑔1, . . . , 𝑔𝑘) are independent Gumbel variables:

𝑌 = 𝑓𝑦(x,g) := argmax
𝑗
{log𝑃 (𝑌 = 𝑗|X = x) + 𝑔𝑗}

Like any mechanism which replicates the conditional distribution under intervention,

this mechanism is indistinguishable from any other causal mechanism based on data

alone. That said, it does satisfy the property given in Definition 2.5.

Theorem 2.2. The Gumbel-Max SCM satisfies the counterfactual stability condition.

The intuition is that, when we consider the counterfactual distribution, the Gumbel

variables are fixed. Thus, in order for the argmax (our observed outcome) to change

in the counterfactual, the log-likelihood of an alternative outcome must have increased

relative to our observed outcome.

We note that posterior inference in the Gumbel-Max SCM is straightforward. Given

a Gumbel-Max SCM as defined above, where 𝑌 = argmax𝑗 log 𝑝𝑗 + 𝑔𝑗 and 𝑝𝑗 :=

𝑃 (𝑌𝐼 = 𝑗), we can draw Monte Carlo samples from the posterior 𝑃 (g|𝑌𝐼 = 𝑖) using

one of two approaches: First, we can use rejection sampling, drawing samples from

the prior 𝑃 (g) and rejecting those where 𝑖 ̸= argmax𝑗 log 𝑝𝑗 + 𝑔𝑗. Alternatively, it

is known (Maddison et al., 2014; Maddison and Tarlow, 2017) that in the posterior,

the maximum value and the argmax of the shifted Gumbel variables log 𝑝𝑗 + 𝑔𝑗 are

independent, and the maximum value is distributed as a standard Gumbel (in the

case of normalized probabilities). Thus, we can sample the maximum value first,

and then sample the remaining values from shifted Gumbel distributions that are

truncated at this maximum value. Then, for each index 𝑗, subtracting off the location

parameter log 𝑝𝑗 will give us a sample of 𝑔𝑗. We can then add this sample g to the

log-probabilities under 𝐼 ′ (i.e., logp′) and take the new argmax to get a sample of the

counterfactual outcome 𝑌 under intervention 𝐼 ′.
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2.4.4 Intuition: Connection to Discrete Choice Models

The Gumbel-Max sampling mechanism was initially introduced in the discrete-choice

literature (Luce, 1959), where it is used as a generative model for decision-making

under utility maximization (Train, 2002; Aguirregabiria and Mira, 2010), where the

log probabilities may be assumed to follow some functional form, such as being linear

in features. This is motivated by understanding the impact of different characteristics

on consumer choices, see (Aguirregabiria and Mira, 2010, Example 1).

We discuss this connection further in this section, but note the contrast with our

approach: Whereas the traditional discrete choice literature assumes a particular

functional form (e.g., linear in features) for the log probabilities, we decouple this

structural mechanism (for estimation of counterfactuals) from the statistical model

used to estimate the conditional probability distributions under interventions. We

encourage the reader to consult (Train, 2002, e.g., Chapter 2) for more details, but

we highlight some relevant pieces of intuition below, with their connection to the

counterfactual stability condition.

Discrete choice models that utilize Gumbel noise are known in the econometrics

literature as logit discrete choice models, and are part of a broader class of discrete-

choice models which are derived on the principle of utility maximization, known as

random utility models. This literature is motivated by consumers as decision-makers,

deciding between different discrete alternatives. In the context of modelling state

transitions in an MDP, we can make the analogy that the ‘decision-maker’ is nature,

and the choice is the next discrete state. First, we introduce two core assumptions:

The concept of random utility maximization, which is introduced as a core assumption

of discrete-choice models in (Train, 2002), and the assumption of additive separability.

Random Utility Maximization We assume that the decision-maker acts to optimize

utility. In particular, the decision-maker associates some utility 𝑈𝑖 with each discrete

choice / alternative 𝑖, and chooses the alternative 𝑖 if and only if 𝑈𝑖 > 𝑈𝑗 ∀𝑖 ̸= 𝑗.

Because 𝑈 is not observed directly, we treat it as a random variable. We only
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observe the conditional probability distribution on 𝑌 , known as the conditional choice

probability, given by

𝑃 (𝑌 = 𝑖|𝑋) =

∫︁
1 {𝑈𝑖 > 𝑈𝑗,∀𝑗 ̸= 𝑖} 𝑝(𝑈 |𝑋)𝑑𝑈 (2.24)

Additive Separability Without loss of generality, the utility 𝑈 can be re-written in

terms of a deterministic component which depends on observable variables 𝑋, and an

unobserved component 𝜖, so that 𝑈𝑗 = 𝑉𝑗 + 𝜖𝑗, where 𝑉 is assumed to be a function

of observable variables, and is called the representative utility. With that in mind,

Equation (2.24) can be rewritten as

𝑃 (𝑌 = 𝑖|𝑋)

=

∫︁
1 {𝑉𝑖(𝑥) + 𝜖𝑖 > 𝑉𝑗(𝑥) + 𝜖𝑖,∀𝑗 ̸= 𝑖} 𝑝(𝜖|𝑋)𝑑𝜖 (2.25)

The assumption of additive separability states that the unobserved components 𝜖 are

independent of the observed components, i.e., 𝜖 ⊥⊥ 𝑋. Tying these assumptions back to

our proposed notion of counterfactual stability, the implication from a counterfactual

perspective is that if we intervene on the variables𝑋, we do not change the values of 𝜖 as

a result of additive separability. Thus, the assumption of random utility maximization

implies that if we observe 𝑌𝑥 = 𝑖, then a necessary condition for substituting 𝑗 for 𝑖 is

that

𝑉 (𝑥′)𝑗 − 𝑉 (𝑥)𝑗 > 𝑉 (𝑥′)𝑖 − 𝑉 (𝑥)𝑖 (2.26)

Different choices of discrete-choice models imply different functional forms for 𝑉 and

different distributions on 𝜖. In the logit model, the 𝜖𝑖 variables are assumed to be

drawn iid (over alternatives 𝑖) from a Gumbel distribution (also known as a Type 1

Extreme Value distribution). This implies that

𝑃 (𝑌 = 𝑖|𝑋) =
exp𝑉𝑖(𝑥)∑︀
𝑗 exp𝑉𝑗(𝑥)

(2.27)
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Because any scaling or shifting of the utility is irrelevant, we can set the scale of 𝑉

such that 𝑉𝑖 = log 𝑝𝑖, consistent with Equation (2.27), and see that Equation (2.26)

corresponds to the counterfactual stability condition.

2.4.5 Appendix: Proofs

Theorem 2.1. Let 𝑌 = 𝑓𝑦(𝑡, 𝑢) be the SCM for a binary variable 𝑌 , where 𝑇 is also a

binary variable. If this SCM satisfies the counterfactual stability property, then it also

satisfies the monotonicity property with respect to 𝑇 .

Proof. To simplify notation further, let 𝑝𝑡=1 := 𝑃 (𝑌 = 1|𝑑𝑜(𝑇 = 1)), 𝑝𝑡=0 := 𝑃 (𝑌 =

1|𝑑𝑜(𝑇 = 0)), and let 𝑌𝑡 := 𝑌𝑑𝑜(𝑇=𝑡). Without loss of generality, assume that 𝑝𝑡=1 ≥

𝑝𝑡=0.

To show that counterfactual stability implies monotonicity, we want to show that

the probability of the event (𝑌1 = 0 ∧ 𝑌0 = 1) is equal to zero. We will do so

by proving both cases: First that 𝑃ℳ|𝑌0=1;𝑑𝑜(𝑇=1)(𝑌 = 0) = 0 and second that

𝑃ℳ|𝑌1=0;𝑑𝑜(𝑇=0)(𝑌 = 1) = 0. We can start with the assumption that 𝑝𝑡=1 ≥ 𝑝𝑡=0 and

write:

𝑝𝑡=1 ≥ 𝑝𝑡=0

=⇒ 𝑝𝑡=1(1− 𝑝𝑡=0) ≥ 𝑝𝑡=0(1− 𝑝𝑡=1)

=⇒ 𝑝𝑡=1

𝑝𝑡=0
≥ (1− 𝑝𝑡=1)

(1− 𝑝𝑡=0)

Using the counterfactual stability condition, the last inequality implies that if we ob-

serve 𝑌0 = 1, then the counterfactual probability of 𝑌1 = 0 is equal to 𝑃ℳ|𝑌0=1;𝑑𝑜(𝑇=1)(𝑌 =

0) = 0, as desired. For the second case, where we observe 𝑌1 = 0, we can simply

manipulate the inequality to see that

(1− 𝑝𝑡=0)

(1− 𝑝𝑡=1)
≥ 𝑝𝑡=0

𝑝𝑡=1
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Which yields the conclusion that 𝑃ℳ|𝑌1=0;𝑑𝑜(𝑇=0)(𝑌 = 1) = 0, as desired, completing

the proof.

Theorem 2.2. The Gumbel-Max SCM satisfies the counterfactual stability condition.

Proof. Recall that we write the shorthand 𝑝𝑖 := 𝑃ℳ;𝐼(𝑌 = 𝑖), and 𝑝′𝑖 := 𝑃ℳ;𝐼′(𝑌 = 𝑖).

Suppose that 𝑌 is generated from a Gumbel-Max SCMℳ under intervention 𝐼, and

we observe that 𝑌𝐼 = 𝑖. The Gumbel-Max SCM implies that almost surely:

log 𝑝𝑖 + 𝑔(𝑖) > log 𝑝𝑗 + 𝑔(𝑗) ∀𝑗 ̸= 𝑖 (2.28)

To demonstrate that the Gumbel-Max SCM satisfies the counterfactual stability

condition, we need to demonstrate that
𝑝′𝑖
𝑝𝑖
≥ 𝑝′𝑗

𝑝𝑗
=⇒ 𝑃ℳ|𝑌𝐼=𝑖;𝐼′(𝑌 = 𝑗) = 0 for all

𝑗 ̸= 𝑖.

We will proceed by proving the contrapositive, that for all 𝑗 ̸= 𝑖, 𝑃ℳ|𝑌𝐼=𝑖;𝐼′(𝑌 = 𝑗) ̸=

0 =⇒ 𝑝′𝑖
𝑝𝑖
<

𝑝′𝑗
𝑝𝑗
.

Fix some index 𝑗 ̸= 𝑖. The condition 𝑃ℳ|𝑌𝐼=𝑖;𝐼′(𝑌 = 𝑗) ̸= 0 implies that there exist

values 𝑔(𝑖), 𝑔(𝑗) such that

log 𝑝′𝑖 + 𝑔(𝑖) < log 𝑝′𝑗 + 𝑔(𝑗) (2.29)

Because the Gumbel variables 𝑔(𝑖), 𝑔(𝑗) are fixed across interventions, this implies

there exist values for these variables which satisfy both inequalities (2.28) and (2.29).

Thus, we proceed by subtracting inequality (2.28) from inequality (2.29), maintaining

the direction of the inequality and cancelling out the Gumbel terms. The rest is

straightforward manipulation using the monotonicity of the logarithm.

log 𝑝′𝑖 − log 𝑝𝑖 < log 𝑝′𝑗 − log 𝑝𝑗

log(𝑝′𝑖/𝑝𝑖) < log(𝑝′𝑗/𝑝𝑗)

(𝑝′𝑖/𝑝𝑖) < (𝑝′𝑗/𝑝𝑗)
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This demonstrates that 𝑃ℳ|𝑌𝐼=𝑖;𝐼′(𝑌 = 𝑗) ̸= 0 =⇒ (𝑝′𝑖/𝑝𝑖) < (𝑝′𝑗/𝑝𝑗) as desired, and

taking the contrapositive completes the proof.

2.5 SCMs with Additive Noise for Continuous Variables

In this brief chapter, we collect some thoughts on structural causal models that reflect

the conditional probability distribution of continuous random variables. Although

this is not the primary focus of this chapter, we include it here for completeness, as a

reference for how the conceptual ideas of this thesis (e.g., decomposition of reward and

investigation of counterfactual trajectories) can be applied in the continuous setting.

In contrast to the categorical case, we do not have specific non-identifiability examples

for continuous SCMs, nor do we have a corresponding assumption, analogous to

counterfactual stability, which suggests specific SCMs for this case. However, we note

that a common model assumed in this case takes the form of Equation 2.30, where the

next state 𝑠𝑡+1 ∈ R𝑛 is assumed to follow a Gaussian distribution conditioned on the

previous state 𝑠𝑡 ∈ R𝑛 and action 𝑎 ∈ 𝒜, and the mean and covariance are determined

by arbitrary functions 𝜇𝜃 : R𝑛 ×𝒜 → R𝑛 and Σ𝜃 : R𝑛 ×𝒜 → R𝑛 𝑡𝑖𝑚𝑒𝑠𝑛 of the previous

state and action. For instance, in Chua et al. (2018), these are parameterized by

neural networks, and Σ𝜃 is a diagonal covariance.

P(𝑠𝑡+1 | 𝑠𝑡, 𝑠𝑡) = 𝒩 (𝜇𝜃(𝑠𝑡, 𝑎𝑡),Σ𝜃(𝑠𝑡, 𝑎𝑡)) (2.30)

This particular model can be re-written equivalently as the following SCM with

additive noise that is drawn independently at each time step, where we write 𝐿𝜃 as

the Cholesky decomposition of Σ𝜃 such that 𝐿𝜃𝐿
𝑇
𝜃 = Σ𝜃. In the case where Σ𝜃 is a

diagonal covariance, as in Chua et al. (2018), this is simply the element-wise square
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root of Σ𝜃.

𝑠𝑡+1 = 𝜇𝜃(𝑠𝑡, 𝑎𝑡) + 𝐿𝜃(𝑠𝑡, 𝑎𝑡) · 𝜖𝑡 (2.31)

𝜖𝑡 ∼ 𝒩 (0, 𝐼𝑛) (2.32)

In a similar fashion, many models of dynamics used for reinforcement learning in

continuous state spaces can be re-formulated as structural causal models with additive

noise that follows some known distribution. Moreover, if the only source of stochasticity

in the transitions is an additive term which is an invertible function of 𝜖𝑡, as in

Equation 2.31, then counterfactual inference is particularly simple, as the exogenous

term 𝜖𝑡 can be identified exactly from the observable prediction error.

2.6 Illustrative Applications with Synthetic Data

In this chapter, we develop some intuition for how counterfactuals could be used

in practice, using some illustrative applications. First, in Section 2.6.1 we use a

toy example of a 2D gridworld to illustrate the differences between counterfactual

trajectories and model-based trajectories. Then we give an illustrative example of how

counterfactuals could be used to ‘debug’ a policy in Section 2.6.2, using a synthetic

environment of sepsis management. We note that all code required to replicate these

synthetic experiments will be made available at https://github.com/clinicalml/

cf-policy-introspection.

2.6.1 Building Intuition: 2D Gridworld

To illustrate the concepts behind counterfactual trajectories, we start with a simple

2D example, inspired by a similar experimental setup in (Gottesman et al., 2019b).11

In Section 2.6.1, we describe the simulator setup, and in Section 2.6.1 we demonstrate

how counterfactual inference proceeds in this setting. Finally, we show in Section 2.6.1

11We thank Omer Gottesman for providing the original code used in his work

129

https://github.com/clinicalml/cf-policy-introspection
https://github.com/clinicalml/cf-policy-introspection


how this enables us to decompose differences in reward (between a target and behavior

policy) across individual episodes.

As an addendum, in Section 2.6.1 we demonstrate how counterfactuals take maximum

advantage of the information present in a trajectory, by making inferences over all

sources of variation, not only a single per-trajectory latent variable.

Simulator Setup

In this example, the agent is navigating a 2D domain, with state 𝑠 ∈ [0, 1]2 and four

possible actions 𝑎 ∈ {[0, 0.1], [0.1, 0], [0,−0.1], [−0.1, 0]} corresponding to the four

cardinal directions (north, east, south, and west). The goal of the agent is to reach

the goal region 𝐺 = {(𝑥, 𝑦) : 𝑥 ∈ [0.9, 1.0], 𝑦 ∈ [0.9, 1.0]}, and the reward is −1 at each

time point until the agent enters the goal region, when it receives a reward of +10.

The dynamics are as follows

𝑠𝑡+1 = 𝑠𝑡 + 𝑎𝑡 + 𝑤(𝑠𝑡; 𝛽) + 𝜖𝑡

Where 𝜖𝑡 ∼ 𝒩 (0, 𝐼𝜎2
𝜖 ) represents time-varying gusts of wind, and 𝑤(𝑠𝑡; 𝛽) = [−𝛽·𝑦𝑡, 0] is

a cross-wind which pushes in either the western or eastern direction, with a magnitude

that increases as the agent progresses north. The 𝛽 parameter is drawn uniquely for

each instance from a Gaussian 𝛽 ∼ 𝒩 (𝜇𝛽, 𝜎
2
𝛽). We will refer to this as the prior on 𝛽,

but we note that this just represents the population-level distribution of 𝛽, and could

be the posterior population distribution after many trajectories have been observed.

We call it a prior to distinguish from the counterfactual posterior over the particular

𝛽 in each trajectory, which we will seek to infer as part of performing counterfactual

inference. Thus, the entire generative model is given by the following, where 𝜋(𝑠𝑡) is a
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deterministic policy which we describe in the next section.

𝛽 ∼ 𝒩 (𝜇𝛽, 𝜎
2
𝛽) (2.33)

𝜖𝑡 ∼ 𝒩 (0, 𝐼𝜎2
𝜖 ) (2.34)

𝑎𝑡 = 𝜋(𝑠𝑡) (2.35)

𝑠𝑡+1 = 𝑠𝑡 + 𝑎𝑡 + 𝑤(𝑠𝑡; 𝛽) + 𝜖𝑡 (2.36)

We can view the trajectories as arising from the POMDP / Structural Equation

Model given in Figure 2-10, where we leave out the rewards for the sake of simplifying

exposition.

𝜖1

𝑠1𝑠0

𝑎1

𝑠2

𝜖2

𝑎2

𝑠3

𝜖3

𝛽

Figure 2-10: The structural causal model model for our 2D sequences, where each black
box is a deterministic function of its parents, and the initial state 𝑠0 is an observed
random variable. In practice, all of our sequences start at the same position, so 𝑠0 is
a deterministic value.

Generating Counterfactual Trajectories

In Figure 2-11a we plot a trajectory from this model, which we will use as a running

example, where 𝜎𝜖 = 0.001, 𝜇𝛽 = 0.03, 𝜎𝛽 = 0.02. This trajectory follows a myopic

behavior policy 𝜋𝑏(𝑠𝑡), which is defined with respect to a series of ‘checkpoint’ regions

that the agent must enter before heading to the goal region in the top right, and at

each time point it takes the action which will minimizes the ℓ2 distance between a

naive prediction 𝑠′𝑡+1 = 𝑠𝑡+𝑎𝑡 and the center of the next region. In this case, the policy

𝜋𝑏 seeks to traverse the regions denoted B1, B2 before seeking the region denoted G.
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G

B1

B2

(a) An observed (factual) trajectory where
𝛽 = 0.061, which traverses the regions B1, B2
before seeking the goal region G

0.04 0.02 0.00 0.02 0.04 0.06 0.08 0.10
Beta

Actual
Posterior
Prior

(b) Prior versus posterior distribution over
the value of 𝛽 for this specific instance

Figure 2-11: Factual trajectory and posterior over latent variable 𝛽

The particular draw of 𝛽 in this case is 0.061.

In this setting, counterfactual inference starts with posterior inference over 𝛽, 𝜖, which

factorizes as

𝑝(𝛽, 𝜖|x,y, a) = 𝑝(𝜖|𝛽,x,y, a)𝑝(𝛽|x,y, a).

Thus, the first step is posterior inference over 𝛽, the results of which are given

in Figure 2-11b using MCMC.12 Note that once we draw a sample of 𝛽 from the

posterior, we can uniquely identify 𝜖 from Equation 2.36, so the only uncertainty in

the counterfactual is due to 𝛽.

The advantage of the counterfactual approach is that it allows us to associate a set

of counterfactual trajectories with every factual trajectory. This is demonstrated in

Figure 2-12a, where we generate counterfactual trajectories under a target policy

𝜋𝑡 which seeks to traverse a different set of checkpoints (T1, T2) before heading

to the goal region G. We make two notes about the counterfactual trajectories,

12We use Pyro (Bingham et al., 2018) to perform MCMC.
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B2

T2

Factual
Counterfactual

(a)

G

B1, T1

B2

T2

Factual
Model-Based (Prior)

(b)

Figure 2-12: In both cases, the target policy 𝜋𝑡(𝑠𝑡) is used, which seeks to pass through
checkpoints T1 and T2 before proceeding to the goal region G. In (a) we see 30
trajectories from the counterfactual posterior, which can be contrasted with (b) where
we see 30 trajectories sampled from the generative model given by Equations (2.33-
2.36), starting from the same point.

contrasting them with model-based trajectories in Figure 2-12b (generated using

the model given by Equations (2.33-2.36), starting at the same point): First, the

counterfactual trajectories are identical to the factual trajectory up until the checkpoint

B1/T1, because both policies take the same actions up until that point. Second, the

counterfactual trajectories have much less variation because they incorporate all the

information from the original trajectory (including both time-dependent and time-

independent variation) through the posterior, whereas a model-based roll-out starting

from the same point does not.

Decomposition of Reward via Counterfactuals

We can use these counterfactuals to associate with each factual trajectory an expected

reward under the counterfactual ‘had the target policy been used instead’, and use

this to examine where those differences are projected to be largest. Figure 2-13

demonstrates this over 100 factual trajectories (which follow the behavior policy) and
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their expected counterfactual reward (under the target policy)13. We plot the factual

reward observed against the counterfactual reward14, and shade each point according

to the expected value of 𝛽 under the posterior. This visually demonstrates that the

difference in reward is greatest for larger values of 𝛽, but does so in a way that can be

tied back to individual episodes.

In a real-data application, this type of analysis can be done in an exploratory fashion,

to (a) search for trajectories where the difference in reward is estimated to be largest,

and (b) examine what differentiates those trajectories from the others.
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Figure 2-13: Decomposition of reward

Addendum: Counterfactual vs. Model-Based Trajectories

In this section, we demonstrate how counterfactuals take maximum advantage of the

information present in a trajectory, by making inferences over all sources of variation.

In this case, we make inferences over both 𝛽 and 𝜖, and this allows us to draw a

13We used 30 counterfactual trajectories for each factual trajectory, in order to compute the
expected counterfactual reward.

14One point is excluded from the plot, with a factual / counterfactual reward of approximately -60
and -18 respectively.
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contrast with two other ways that, conceptually, we could have generated trajectories

from the same model.

1. Model-based roll-out: Sample a new 𝛽 ∼ 𝑝(𝛽), and then sample a new 𝜖𝑡 ∼ 𝑝(𝜖)

at each time step. Given a deterministic policy, these random parameters imply

a fixed trajectory.

2. Model-based roll-out (posterior on 𝛽): Sample 𝛽 ∼ 𝑝(𝛽|s, a), and then sample

a new 𝜖𝑡 ∼ 𝑝(𝜖) at each time step.

3. Counterfactual roll-out: Sample 𝛽, 𝜖 ∼ 𝑝(𝛽, 𝜖|s, a), which in this model is

equivalent to sampling a value for 𝛽 from the posterior, and then inferring the

unique value of 𝜖𝑡 for each time step.

To demonstrate the differences between these approaches, we use two environments:

The first environment is the same as the one described above (with 𝜎𝜖 = 10−3, 𝜇𝛽 =

0.03, 𝜎𝛽 = 0.02), and the second has a lower variance over 𝜖 but a higher prior variance

on 𝛽 (with 𝜎𝜖 = 10−4, 𝜇𝛽 = 0.03, 𝜎𝛽 = 0.04). A single trajectory is sampled from each

environment15, and are given in Figure 2-14, along with the resulting posterior over 𝛽.

With these two environments in hand, we can explore the differences between the

three approaches given above. This is illustrated in Figure 2-15. In particular, we note

the drawbacks of the second approach (generating a posterior over 𝛽 alone), which

has the appealing feature that it does not require a structural causal model with

deterministic functions, only a graphical model with some time-independent latent

factor 𝛽. Intuitively, this approach will face two drawbacks, which are illustrated in

Figure 2-15:

• First, it is not guaranteed to replicate the same outcomes if the same actions

are taken, violating our intuition for how a counterfactual should behave. This

can be seen in Figure 2-15, where the counterfactuals are the only trajectories

that exhibit this behavior.

15The trajectory from the prior section is used for the first environment, for continuity
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Figure 2-14: A single trajectory sampled from each of the two environments. The
latter environment has a higher prior variance over 𝛽, and a lower variance over 𝜖.
Below the trajectories are the corresponding prior and posterior distributions over 𝛽.
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• Second, it will ignore the information provided by 𝜖, leading to unnecessary

variance in the roll-out. If we have a SCM which is an accurate representation of

the environment (as we do in this case), we can reduce the variance substantially

by taking this information into account, especially when the variance of 𝜖 is

high. This is also seen in Figure 2-15, where in the top row there is little (visual)

difference between the two model-based approaches.
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T2

Factual
Posterior on Beta, Epsilon
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T2

Factual
Posterior on Beta
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G

B1, T1

B2

T2

Factual
Posterior on Beta

G

B1, T1

B2

T2

Factual
Prior

Figure 2-15: Comparison of the three approaches given above. The first row represents
the first environment, where 𝜎𝜖 = 10−3, 𝜎𝛽 = 0.02, and the second row represents the
second environment, where 𝜎𝜖 = 10−4, 𝜎𝛽 = 0.04. The black trajectory represents a
factual trajectory, and is constant across the columns. From left to right, we have
counterfactual trajectories (which use the posterior on 𝛽 and 𝜖), model-based trajectories
which only use a posterior on 𝛽, and model-based trajectories which use neither, just
sampling from the prior. Note that in the first row, using the posterior on 𝛽 does not
reduce the variation as much as it does in the second row, due to the differences in 𝜎𝜖.

This concludes our conceptual example, which should drive home the idea that, if we

have an accurate SCM of the environment, we can construct counterfactual trajectories

which (a) allow us to decompose differences in reward across individual episodes, and (b)

are easier to contrast with the original trajectory than other model-based trajectories

137



(e.g., without using a SCM), through modelling all sources of variation in the factual

trajectory. In particular, using a SCM allows us to isolate only the differences which

are due to the change in policy, keeping all independent sources of variation constant.

In the next section, we will take this a step further, and show how counterfactuals can

help us ‘debug’ a policy and model of an environment, even if our SCM is not entirely

correct.

2.6.2 Illustrative Example: Sepsis Management

As discussed in Section 2.1, our hope is to provide a method for qualitative introspection

and ‘debugging’ of RL models, in settings where a domain expert could plausibly

examine individual trajectories. We give an illustrative example of this use case here,

motivated by recent work examining the use of RL algorithms for treating sepsis

among intensive-care unit (ICU) patients. In particular, we use a simple simulator of

sepsis and “debug” a RL policy that is learned on observed trajectories. This replicates

an analysis originally presented in our publication (Oberst and Sontag, 2019).16

An analysis like this requires three ingredients: First, we are given observed trajectories,

but cannot directly interact with the environment17. Second, we have access to a

structural causal model of the environment. In this case, that model is a finite MDP,

learned based on observed samples, combined with the assumption of a Gumbel-Max

SCM for transition distributions. Finally, we need a target policy to evaluate. We

refer to the policy which generated the data as the behavior policy, to distinguish it

from the target policy.

In Sections 2.6.2-2.6.2 we describe our illustrative scenario, in which a target RL

policy appears to perform well using off-policy evaluation methods such as weighted

importance sampling, when it is actually much worse than the behavior policy. In

Sections 2.6.2-2.6.2 we then demonstrate how our method could be used to identify a

16We also thank Christina X. Ji and Fredrik D. Johansson for their work on developing an earlier
version of the sepsis simulator.

17We do not assume access to a simulator; In this example, it is used only for obtaining the initial
observed trajectories
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promising subset of trajectories for further introspection, and uncover the flaws in the

target policy using side information (e.g., chart review of individual patients).

Setup of Illustrative Example

Environment: Our simulator includes four vital signs (heart rate, blood pressure,

oxygen concentration, and glucose levels) with discrete states (e.g., low, normal,

high), along with three treatment options (antibiotics, vasopressors, and mechanical

ventilation), all of which can be applied at each time step. Reward is +1 for discharge

of a patient, and -1 for death. Discharge occurs only when all patient vitals are within

normal ranges, and all treatments have been stopped. Death occurs if at least three

of the vital signs are simultaneously out of the normal range. In addition, a binary

variable for diabetes is present with 20% probability, which increases the likelihood of

fluctuating glucose levels.

Observed Trajectories: For the purposes of this illustration, the behaviour policy

was constructed using Policy Iteration (Sutton and Barto, 2017) with full access to

the parameters of the underlying MDP (including diabetes state). This was done

deliberately to set up a situation in which the observed policy performs well. To

introduce variation, the policy takes a random alternative action w.p. 0.05. Using

this policy, we draw 1000 patient trajectories from the simulator, with a maximum of

20 time steps. If neither death nor discharge is observed, the observed reward is zero.

Structural Causal Model: For this illustration, we ‘hide’ glucose and diabetes state

in the observed trajectories; Given this reduced state-space, we learn the parameters

of the finite MDP by using empirical counts of transitions and rewards from the

1000 observed trajectories, with death and discharge treated as absorbing states. For

state / action pairs that are not observed, we assume that any action leads to death,

and confirm that this results in a target policy which never takes an action that has

never been observed. For counterfactual evaluation, we make the assumption that the

transitions are generated by a Gumbel-Max SCM.

139



Target Policy: The target policy is learned using Policy Iteration on the parameters

of the learned MDP. Because the target policy is learned using a limited number of

samples, as well as an incomplete set of variables, it should perform poorly relative to

the behavior policy.

Further details of the simulator can be found in the source code, which will be made

available at https://www.github.com/clinicalml/cf-policy-introspection.

Off-Policy Evaluation Can Be Misleading

First, we demonstrate what might be done to evaluate this target policy without the

use of counterfactual tools. In Figure 2-16, we compare the observed reward of the

actual trajectories against the estimated reward of the target policy. Using weighted

importance sampling on the given trajectories, the target policy appears superior

to the behavior policy. We also use the parameters of the learned MDP to perform

model-based off-policy evaluation (MB-PE), using the MDP as a generative model

to simulate trajectories and their expected reward. Both of these suggest that the

target policy is superior to the behavior policy. In reality, the target policy is inferior

(as expected by construction), as verified by drawing new samples from the simulator

under the target policy. This corresponds conceptually to what would happen if the

target policy were deployed “in the wild”.

With this in mind, we demonstrate how examining individual counterfactual trajectories

gives insight into the target policy. The first step is to apply counterfactual off-policy

evaluation (CF-PE) using the same MDP and the Gumbel-Max SCM. This yields

similarly optimistic results as MB-PE. However, by pairing counterfactual outcomes

with observed outcomes of individual patients, we can investigate why the learned

MDP concludes (wrongly) that the target policy would be so successful.
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Figure 2-16: Estimated reward under the target (RL) policy, with 95% uncertainty
intervals generated through 100 bootstrapped samples (with replacement) of the same
1000 observed trajectories (for 1-4) and of 1000 new trajectories under the target
policy (for 5). (1) Obs: Observed reward under the behavior policy. (2) WIS:
Estimated reward under the target policy using weighted importance sampling. (3)
MB: Estimated reward using the learned MDP as a generative model. (4) CF:
Estimated reward over counterfactual trajectories (5 per observed trajectory). (5)
True: Observed reward under the target policy, over 1000 newly simulated trajectories.

Identification of Informative Trajectories

To debug this model (without access to a simulator), we can start by drawing counter-

factual trajectories for each individual patient under the target policy. With these in

hand, we can assign each individual patient to one of nine categories, based on the

most frequently occurring counterfactual outcome (death, no change, or discharge) in

Figure 2-17. This highlights individual trajectories for further analysis, as discussed

in the next section18.

18We only draw 5 counterfactuals per observed trajectory for illustrative purposes here, but note
that standard concentration arguments could be used to quantify how many of these independent
draws are required to achieve a desired precision on counterfactual quantities of interest, e.g., the
probability of death
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Figure 2-17: Decomposition of 1000 observed patient trajectories based on observed
outcome (Died, no change, and discharged) vs counterfactual outcome under the target
policy, using the most common outcome over 5 draws from the counterfactual posterior.

Insights from Examining Individual Trajectories

Using this decomposition, we can focus on the 10% of observed trajectories where the

model concludes that “if the physician had applied the target policy, these patients

would have most likely lived”.

This is a bold statement, but also one that is plausible for domain experts to investigate

(e.g., through chart review of these specific patients), to try and understand the

rationale. We illustrate this type of analysis in Figure 2-18, which shows both the

observed trajectory and the counterfactual trajectories for a simulated patient.

This example illustrates a dangerous failure mode, where the target policy would have

halted treatment despite the glucose vital being dangerously low (e.g., at 𝑡 = 5, 7, 8, 11).

Under the learned MDP, the counterfactual optimistically shows a speedy discharge as

a result of halting treatment. To understand why, recall that discharge occurs when

all four vitals are normal and treatment is stopped. Because diabetes and glucose

fluctuations are relatively rare, and because the MDP does not observe either, the

model learns that there is a high probability of discharge when the first three vitals

are normal, and the action of ‘stop all treatments’ is applied.
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Figure 2-18: Observed and counterfactual trajectories of a patient. The first four plots
show the progression of vital signs, and the last three show the treatment applied. For
vital signs, the normal range is indicated by red dotted lines. The black lines show the
observed trajectory, which ends in death (signified by the red dot), and the blue lines
show five counterfactual trajectories all of which end in discharge, signified by green
dots. The glucose vital sign was not included in the model, and hence does not have a
counterfactual trajectory. Note how this differs from a newly simulated trajectory of a
patient with the same initial state, e.g., all the counterfactual trajectories are identical
to the observed trajectory up to a divergence in actions (𝑡 = 2).

Addendum: Impact of Hidden State

In the experiments given above, we hide the glucose and diabetes state from the model

of dynamics used for the RL policy. In this section we explore the impact of that
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Figure 2-19: Boxplots show the median and intervals which capture 95% of the 100
evaluations, each time with a newly simulated set of 1000 episodes used for training
and 1000 episodes used for the held-out WIS estimator; WIS (train) is used on the
training episodes, as in the previous sections, and WIS (held-out) is performed on the
held-out set of 1000 episodes

choice on the off-policy evaluations, as well as on the quality of the RL policy.

To demonstrate, in Figure 2-19, we replicate Figure 2-16, but with some important

differences. First, instead of using 100 bootstrapped samples of the original 1000

trajectories, we instead repeat the entire process 100 times, with an independent set

of trajectories drawn from the simulator in each case. These uncertainty intervals are

wider, reflecting the variation which is not captured by bootstrapping alone. Second,

we compare the use of a WIS estimator used on the training data (i.e., the original

1000 episodes used to learn the model of dynamics), with a WIS estimator used on a

held-out set of 1000 independent episodes. While the example given in the Section 2.6.2

is meant to conceptually capture what might happen in a single analysis (where only

a single set of trajectories is available), Figure 2-19 demonstrates the variability across

analyses, including those with access to a large held-out set of trajectories.

Towards understanding the impact of hiding variables from the RL policy, we performed

the same experiment again, but giving the RL policy access to the entire state space.

The results are shown in Figure 2-20, and the results from both figures are shown in
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Figure 2-20: Same setup as Figure 2-19, but allowing the model of dynamics (and the
estimated behavior policy) to see the full state

Table 2.1

Table 2.1: Performance given as Mean (95% CI) from Figures 2-19- 2-20

Hidden state No hidden state

Observed Reward 0.31 (0.27, 0.35) 0.31 (0.27, 0.35)
WIS (train) 0.61 (-0.42, 0.99) 0.58 (-0.23, 0.92)
WIS (heldout) 0.32 (-0.92, 0.99) -0.04 (-0.94, 0.80)
MB Estimate 0.81 (0.57, 0.96) 0.58 (0.37, 0.73)
True RL Reward -0.27 (-0.59, 0.05) -0.19 (-0.41, 0.00)

There are several reasons why weighted importance sampling, and other off-policy

evaluation methods, could fail to capture the true performance of a target policy. These

include issues like confounding and small sample sizes, as discussed in (Gottesman

et al., 2019a). In this particular synthetic example, all of the following factors may play

a role in the above results, but it is difficult to say conclusively how strong each factor

is, and how they interact to produce the results: (i) Confounding due to unobserved

states, (ii) sample complexity of learning the MDP, which is more pronounced when

all state information is observed (144 states vs 1440 states), and (iii) small sample

sizes in both the training and held-out datasets.

With that in mind, we believe that building a more comprehensive simulated environ-
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ment, in which these various factors can be disentangled more precisely, would be a

valuable direction for future work. In addition, we believe such an environment would

be useful for evaluation of a variety of off-policy techniques beyond the limited set

discussed in this chapter e.g., more recently developed methods such as Thomas and

Brunskill (2016); Liu et al. (2018).

2.7 Real-Data Case Study: Sepsis Management

In this chapter, we replicate the work of Komorowski et al. (2018), which seeks to

learn an optimal policy for treating patients with sepsis in the ICU, using model-based

RL techniques based on a finite MDP. We then apply our method of counterfactual

policy introspection to the resulting policy and model, with the goal of understanding

how well our approach works with a real-world example. We recapitulate a high-level

overview of their methodology in Section 2.7.1, while deferring to the original paper

for the full details of their setup. Having learned an MDP and corresponding policy

following their approach, we perform a similar set of analyses to those we performed

in Section 2.6.2: In Section 2.7.2 we estimate the reward using WIS on a held-out test

set, and in Section 2.7.3 we decompose the counterfactual reward across trajectories

in the test set.

Most notably, we find there are a very small number of patients who the model believes

would have died in the counterfactual, and (as such) most of the patients who died in

their observed trajectories are projected to have lived under the counterfactual. We

select a random trajectory from this latter set for further analysis in Section 2.7.4, and

review it alongside the full medical record, with the assistance of a clinician. In short,

we find that it recommends actions which are not appropriate for this patient, based

on information available in the clinical notes, and it expects unrealistic outcomes in

the counterfactual as a result of those actions. We discuss this case in more depth in

Section 2.7.4.

Finally, in Section 2.7.5 we discuss some aspects of the original paper that made this
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analysis challenging, as well as some broader reflections on the exercise as a test-case

for understanding where our approach works well, and where it has limitations.

2.7.1 Replicating Komorowski et al. (2018)

The authors of (Komorowski et al., 2018) seek to learn a better policy for treating

patients in the ICU with sepsis, as discussed previously in this chapter. In this section,

we describe their approach at a high level, as well as our methodology for replicating

it. We would like to thank Matthieu Komorowski for his assistance in replicating the

original paper.

Data Source There are two sources of data used in Komorowski et al. (2018); First,

they use data from the MIMIC-III database (Johnson et al., 2016), which contains

de-identified medical records from >50k admissions to critical care units at Beth Israel

Deaconess Medical Center in Boston, Massachusetts. It also contains out-of-hospital

mortality information using the Social Security Administration Death Master File.

In their work, MIMIC-III is used for model development, and a separate dataset is

used for model testing, the eICU Research Institute Database (eRI). We used the

MIMIC-III database for both model development and testing, using a held-out test

set of patients for evaluation, in part due to the availability of clinical notes.

Data Processing We used MATLAB code supplied by the authors at https://

github.com/matthieukomorowski/AI_Clinician to process the raw data into the

necessary format, which consists of one row of data for each 4-hour block of a patient’s

ICU stay, with a maximum of 20 rows per patient. We used slightly modified versions

of the scripts, which will be made available at https://github.com/clinicalml/

cf-policy-introspection. The original scripts are

1. AIClinician_Data_extract_MIMIC3_140219.ipynb to extract data from the

MIMIC-III database
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2. AIClinician_sepsis3_def_160219.m to create the sepsis cohort itself

3. AIClinician_MIMIC3_dataset_160219.m to construct the data table for down-

stream analysis

Learning and Evaluation We wrote our own python script to replicate the following

procedure for selecting the best policy, using the code provided in AIClinician_core_160219.m

as a guide when details were not clear from the main paper.

1. Center and scale all of the non-binary variables across the entire dataset, using

log transformations where appropriate, and converting binary variables into

[−0.5, 0.5]. For the two action variables (fluids and vasopressors), discretize into

5 bins, with the first reserved for zero treatment, and the remaining 4 based

on quantiles over the entire dataset. Hold out 20% of the MIMIC-III data (by

patient ID) as a test set.

2. Repeat 500 times, using a different 80/20 train / validation split on the remaining

patient IDs:

(a) Use K-Means clustering on 25% of the data19 to assign each 4-hour block

to one of 750 states

(b) Use 90-day survival as the reward signal, with 100,−100 corresponding to

survival and death, respectively. This reward is obtained at the end of a

trajectory (or after 20 steps, whichever is lower). Create two new absorbing

states to reflect these outcomes.

(c) Use empirical transition counts (state, action → state) to fill in the (three

dimensional) transition matrix 𝑃 (𝑆 ′|𝑆,𝐴), ignoring any state / action pair

with fewer than 5 observations (we will refer to this later as ‘truncation’).

In the original paper, many of the state / action pairs have no observations,

or fewer than 5 observations, so the transition matrix is not fully defined.

We resolved this by treating any observed state / action pair as leading to

19This was done in the original paper for computational reasons, and we do the same
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the ‘death’ absorbing state, towards the stated goal in Komorowski et al.

(2018) of preventing the RL policy from taking any action which is rarely

or never seen at a certain state. See Section 2.7.5 for more discussion on

this point. Rewards are defined with respect to the absorbing state, so this

suffices to define the MDP.

(d) Learn a policy from this MDP using Policy Iteration, and evaluate using

Weighted Importance Sampling (WIS) on the validation set. In the original

paper, the physician policy is estimated on the training set using the

empirical transition counts, after truncation (described above), and then

softened so that all actions have non-zero probability. The approach to

softening could cause some probabilities to be negative, so we use a slightly

different approach, described in Section 2.7.5. The RL policy is also softened

to an 𝜖-greedy policy for the purposes of WIS, where the learned action is

taken with 99% probability, and otherwise a random alternative is taken.

(e) Calculate a 95% confidence interval using bootstrapped validation samples,

and record the lower bound.

3. Using the k-means clustering, estimated MDP, and the resulting policy which

obtained the highest WIS lower bound on the validation set, evaluate on the

test set.

2.7.2 Off-Policy Evaluation with WIS

We give the results of our replication in Figure 2-21 and Tables 2.2 and 2.3. First, we

note that there is a large variation in WIS performance on the validation set, with

an average estimated reward which is lower than that of the behavior policy. Second,

the test WIS results (using the ‘best’ policy) are highly variable as well, as revealed

through bootstrapping on the 4415 test samples in Table 2.3. This motivates the

rest of this section, where we dig further into the counterfactual trajectories to better

‘sanity check’ this policy.
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Figure 2-21: Observed reward of the physician policy (Obs) versus the estimated reward
of the learned RL policy using both weighted importance sampling on the validation
set (WIS) as well as a model-based (MB) estimate derived from simulating 1000
trajectories, using the learned policy, on the learned MDP. Box-plots show the median
and 95% range across 500 iterations. Higher is better.

Table 2.2: Results from 500 iterations of the procedure described in Section 2.7.1.
Mean, median, and 95% range calculated over all iterations, and 1000 simulated
trajectories were used to derive the model-based result, using the same MDP that was
used to learn the policy. Higher is better.

Mean Median 95% range

Observed (Validation) 59.33 59.43 (56.81, 61.85)
WIS (Validation) 53.00 76.64 (-73.00, 99.91)
Model-based 90.22 90.20 (87.85, 92.70)

2.7.3 Decomposition with Counterfactuals

First, we draw 5 counterfactual trajectories (under the chosen policy) for each of the

test trajectories, using the techniques described in Section 2.4. In Figure 2-22 we

take the most common outcome across the counterfactual trajectories to assign each

individual to one of six categories, based on their factual outcome of 90-day survival

and their counterfactual outcome, which can include ‘no outcome’ (see Section 2.7.5

for more discussion on this point).

Most notably, we find that very few patients have a negative outcome in the counter-

factual, and most of the patients who died would have lived. In the next section we

investigate this further by selecting a random trajectory from the latter set of patients.
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Table 2.3: Performance of the chosen policy on the held-out test set of 4415 trajectories,
using bootstrapping (750 iterations) to estimate the distribution

Mean 2.5% 25% 50% 75% 97.5%

Observed 60.28 57.83 59.46 60.32 61.09 62.82
WIS 60.26 -28.42 47.72 69.42 83.50 96.59

Died N/A Lived

Counterfactual Outcome
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Figure 2-22: Comparison of outcomes (90-day survival) between the observed and
counterfactual trajectories, on the test set. Most notably, under the counterfactual it
is estimated that very few patients would have died, and most of the patients who died
would have lived. However, 7% of patients have no outcomes in the counterfactuals,
due to a nuance discussed in Section 2.7.5

2.7.4 Inspection of Counterfactuals using the Full Medical Record

As stated many times throughout this chapter, one of the main conceptual advantages

of using counterfactuals is that they are conceptually easier to ‘disprove’, and that

faults in the counterfactuals are a (heuristic) indication of faults in the learned model

of the environment. In particular, by forcing our model to make counterfactual

claims about an actual patient, we can bring additional side-information to bear on

scrutinizing the conclusions. To that end, we present an illustrative example in this

section, where we review the medical record of a patient alongside their counterfactual

trajectories. In particular, we take a randomly selected patient from among those who

died but ‘would have lived’ under all their estimated counterfactual trajectories.
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We began by reviewing the clinical notes for this patient (the de-identified notes are

available in MIMIC-III) with an infectious disease clinician20. A summary of the major

takeaways from reviewing those notes:

• Cause of admission: This patient was admitted after collapsing, with initial

suspicion that this was due to either a respiratory or cardiac failure, and was

taken immediately to the cath lab where cardiac causes were ruled out. Chest

imaging showed a large amount of fluid around the right lung, and a large

mass in the lower right lobe. This was discovered to be State IIIA lung cancer,

suggesting the possible etiology of the patients’ presentation to be cardiovascular

collapse and a post-obstructive pneumonia secondary to compression from the

mass.

• Treatment before and during ICU: Cardiovascular compromise and inflammation

from pneumonia contributed to the build up of a large amount of fluid in the

pleural space. Thus, clinicians elected to place a chest tube, which subsequently

drained >1L of serous fluid. The patient’s clinical status responded rapidly,

suggesting the external compression from the fluid was a major contributor to

his ICU course. Antibiotics and vasopressors in this setting act as temporizing

measures until the definitive intervention of chest tube placement could be

performed.

• Cause of death: Despite the placement of a chest tube, the underlying problem

of a large lung mass leading to cardiovascular compromise remained unaddressed.

Given the morbidity of the necessary chemotherapy, it was decided by the

providers, the patient and the family that further aggressive intervention would

not have been in the patient’s interests.

After reviewing the notes, we reviewed the counterfactual trajectories alongside the

factual trajectories. We present a condensed output in Figure 2-23, consisting of a few

20Dr. Sanjat Kanjilal, MD, MPH, the Associate Medical Director of Clinical Microbiology at
Brigham & Women’s Hospital. We thank Dr. Kanjilal for all of his help with this work.
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important vital signs, and defer the full output to Figures 2-24-2-27.21 In particular,

we make the following observations

• No basis (in medical record) for proposed actions: Recall that the patient was

in fluid overload due to congestive heart failure and capillary leakage, which

were themselves the result of the adjacent lung mass. The optimal approach

in this setting is to carefully reduce the cardiac afterload using diuretics and

anti-hypertensives, as well as drainage of the pleural effusion. Thus, while

vasopressors and fluids are not grossly counter-indicated, they would have the

opposite effect — increasing the work of the heart because they increase cardiac

afterload, eventually resulting in worsening of the patients clinical status. Thus,

while in the early admission period it is not unreasonable to provide vasopressors

and fluids to maintain vital signs, there is a clinical trade-off, and there is no

support in the medical record for giving maximum dose of vasopressors in the

early stages, present in several of the counterfactual trajectories.

• Consequences of proposed actions are not reflected in CF trajectories: As

noted, the alternative policy gives the maximum dose of vasopressers early

on. However, the first 12 hours (first 3 time periods) look almost identical in

the counterfactuals to the actual trajectory, and do not reflect the expected

effect of additional vasopressors on blood pressure and other vital signs. In

particular, maximum dose of vasopressors should have resulted in a significant

blood pressure response, which is not evident in these counterfactual trajectories.

• The anticipated outcomes are not credible given medical record: Most glaringly,

21How to read counterfactual trajectories: To visualize the counterfactual trajectories, we map the
patient state back to the original space of variables. To do so, we used the median of each feature
in each cluster (across the entire dataset), though this is not entirely reliable, as can be seen by
comparing the black solid lines (the median values for the corresponding state in k-means) with the
black dotted lines, which indicate the true values of each variable. This mismatch is discussed further
in Section 2.7.5. To read the trajectories, note that the observed trajectory is given in black, and the
counterfactuals are given in light blue, with both derived from the medians (for each feature) of their
respective states. Black dotted lines indicate the patient state without using k-means clustering. Red
crosses and green dots both indicate the end of the trajectory, as well as the outcome, with green
indicating 90-day survival and red indicating a lack thereof. Grey circles indicate no outcome in the
counterfactual. Red dotted lines indicate the middle 90% across all patients, in the original data
prior to k-means.
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the anticipated outcomes (discharge from the ICU and 90-day survival) are not

credible given what we know about the patient from their medical record. For

instance, the first counterfactual trajectory ends in 8 hours (with subsequent

90-day survival). That stands in contrast to what we know from the medical

record, that the death of this patient was due to irreversible lung damage caused

by Stage IIIA lung cancer and pneumonia, neither of which would have been

resolved by this treatment.

Our review suggests an important possible limitation of the underlying learned MDP

and policy. Important features (such as the underlying infection and lung cancer in this

case) are not included in the model, but could reasonably impact both the outcome of

the patient as well as the treatment decisions of clinicians. This issue also arises in a

second trajectory that we randomly sampled (not shown here), in which the clinical

notes indicated that the patient died from complications due to pre-existing Hodgkin

Lymphoma and treatment in the ER (prior to admission to the ICU) which triggered

respiratory failure and irreversible lung injury. The counterfactuals all indicated 90-day

survival, contradicting the clinical notes which suggest that by the time the patient

entered the ICU, nothing more could be done.

In conclusion, if we are to fully trust a model of dynamics, and the policy that is

derived from it, then we would like to see a series of counterfactuals that ‘make

sense’ to a clinician, as a type of explanation and justification for why the RL policy

might have performed better than existing practice. As always, it is possible that the

structural causal model itself is incorrect in this case, but we present this method as a

useful (and simple) heuristic to apply, for generating hypotheses which could be useful

for iterating on the model and resulting policy.

2.7.5 Challenges and Lessons Learned

There were a number of challenges in applying our methodology as imagined, some of

which are due to idiosyncrasies with the approach in Komorowski et al. (2018).
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Specification of outcome The outcome used in the original paper was 90-day mortality

after discharge from the hospital, which was treated as an absorbing state. Moreover,

for each patient, a maximum of 20 time-steps (of 4 hours each) were allowed, with the

outcome always coming at the end of an observed trajectory. Thus, it has the implicit

interpretation of ‘discharge followed by [survival / death] after 90 days’. However,

there is no guarantee that any model-based trajectory (including the counterfactuals)

will end within 20 steps, leading to some instances where the counterfactual ends

without an observed outcome.

Specification of states First, there are some idiosyncrasies with how state variables

were encoded in the original paper. For instance, every variable is included in the k-

means clustering, including those which should not fluctuate over the course of an ICU

stay (such as gender and age). Second, we observed that our approach to visualization,

of using the median value of each feature for each state, has some limitations. In

particular, perhaps due to not having a large enough set of discrete states, when we

‘impute’ the factual trajectory based on the discrete states and compare it to the

actual trajectory for those features, they are not always comparable. See Figure 2-28

for an example of this, taken from the same patient as above. This suggests that for

our method to be most useful, the MDP should either operate in the original state

space or operate in an invertible representation of it.

Estimation of behavior policy Because the behavior policy is derived using empirical

counts, and because rare actions are truncated, it leads to an estimated zero-probability

of several (observed) state/action pairs (including in the training set). This makes WIS

impossible to use, because it relies on each observed action having non-zero probability.

The solution to this taken in the original paper was to subtract a small amount from

every action that has a non-zero probability, and add it to the other actions evenly.

The way it was implemented in the supplied MATLAB code, this could cause some

actions to have negative probability, because the amount subtracted was equal across

observed actions. We resolved this in two ways: First, we did not implement truncation
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for the purposes of learning the behavior policy. Second, we softened the policy by

instead adding a pseudo-observation of 0.01 to every action/state pair which was never

seen, in the empirical counts.

Empirical MDP In the original paper, empirical counts are used to estimate the

MDP, but does not result in a valid set of conditional distributions, because some

state/action pairs are never observed. This is critical for our approach, because we

need the observed trajectories to have non-zero probability under the MDP to calculate

a counterfactual. Here we chronicle our efforts to resolve this, as well as explaining

our final resolution:

1. As an initial attempt to resolve this, we first introduced the notion that you

instantly die if you take an action that had never been taken, and used this to

learn the policy (so that it avoids those actions). This approach forced us to re-

learn the MDP on the test data for evaluation purposes, so avoid zero-probability

trajectories.

2. This proved to be an inadequate solution for running on test data, because it

results in a skewed model-based (and thus, counterfactual) estimate of reward;

While the policy takes actions that were observed in the training data, they may

not be observed in the test data, and by construction of our test MDP led to

instant death.

3. Thus, we settled on using a softened MDP for the counterfactual evaluations,

based only the training data, where we added a pseudo-observation of 10−3 for

each transition, did not truncate observations, and did not use the ‘instant death’

rule. We confirmed (see Table 2.4) that this did not meaningfully impact the

model-based estimate of reward under the RL policy, so we took it as a good

proxy for the original MDP used to learn the policy.
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Table 2.4: Comparison of MDPs; 1000 model-based trajectories were averaged, and
this was done 10 times to give 90% confidence intervals

Approach Average Reward 90% interval

Train 89.68 (88.08, 91.11)
Train (Soft) 85.32 (83.74, 86.52)
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Figure 2-27: Example Trajectory including all features (Part 4/4). See description in
the main text.
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2.8 Conclusion

Given the desire to deploy RL policies in high-risk settings (e.g., healthcare), it is

important to develop more tools and techniques to introspect these models and the

policies they learn. In this chapter, we have presented a general method for doing so,

which we call counterfactual policy introspection. Our approaches requires two inputs:

A policy to be inspected, and a model of the relevant decision-making problem. This

model could be a MDP or POMDP, or it could be any other learned graphical model

of the environment which can be represented as a directed acyclic graph. By making

general assumptions regarding the structure of causal mechanisms, we convert such a

model into a structural causal model which can be used to generate counterfactuals.

These counterfactuals serve several purposes:

1. First, they can be used to get a sense for which patients are driving the overall

model-based reward. Theoretically, if the SCM is well specified, the expected

counterfactual reward will be equivalent to the model-based reward. Anecdotally,

in both our real-data and synthetic experiments (where the model was presumably

not well-specified), we also found this to hold approximately.

2. Second, they can be used to highlight particularly interesting trajectories for

further manual inspection. In our experiments, we give the example of highlight-

ing patients who the model believes would have lived under the counterfactual,

despite dying in the real world.

3. Finally, they serve to provide a detailed ‘rationale’ for the estimated performance

of the policy, in terms of an expected counterfactual trajectory. These trajectories

seek to isolate the differences in intermediate and final outcomes that are due

to difference in actions, and can be reviewed along with side information (e.g.,

chart review in the medical setting) to identify flaws in the conclusions, which

may suggest flaws in the original model.

However, this approach does not come without its limitations. It requires knowing,
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or making an untestable assumption about, the structural causal model: Here we

propose the Gumbel-Max SCM, which is an example of an SCM that may be realistic

in some settings. As revealed through our real-data experiment, our approach may

also work best when the environment is modelled directly in the original state space,

and the model of dynamics is not too brittle to handle unseen trajectories that may

arise in test data. Nonetheless, our real-data experiments give us hope that this might

be useful to researchers in the future, as a relatively straightforward method to debug

models and generate hypotheses for improving them.
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Chapter 3

Characterization of Overlap in

Observational Studies

This chapter (and accompanying appendix) was previously published as (Oberst et al.,

2020) at AISTATS 2020.

3.1 Introduction

To accurately estimate the causal effect of an intervention, it is essential that interven-

tion alternatives have been observed in comparable contexts, i.e., that there is overlap

between the distributions of individuals receiving each intervention (Rosenbaum and

Rubin, 1983b; D’Amour et al., 2017). In randomized experiments, overlap is guar-

anteed for the study population by randomizing the intervention. However, this is

not the case in observational studies where interventions are chosen according to an

existing, in some cases deterministic, policy. In such settings, overlap may hold only

for an unidentified subset of cases, with the causal effect being unidentifiable outside

of this subset. We motivate this chapter with the following use cases:

Scenario 1: From study to policy. When researchers publish the findings of a clinical

trial, they also share the eligibility criteria (e.g., Age ≥ 18, Serum M protein ≥ 1g/dl
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or Urine M protein ≥ 200 mg/24 hrs, Recent diagnosis (National Cancer Institute,

2012)) and cohort statistics in order to characterize the cohort of study subjects. This

gives policy makers means to assess the external validity of the results, i.e., to whom

the results apply. We seek to provide the same for observational studies, with our

algorithms producing an interpretable description of subjects with treatment group

overlap.

Scenario 2: Evaluating guidelines. There are over 471 different guidelines for how to

manage hypertension (Benavidez and Frakt, 2019). We could evaluate these—and new

guidelines—using off-policy evaluation methods (Precup et al., 2000) on observational

data derived from electronic medical records. Off-policy evaluation of a guideline is

only possible on subsets of the population where there is some probability that the

guideline was followed (which we will also call overlap). The estimated policy value

should be accompanied by a description of the validity (overlap) region.

Beyond causal estimation, overlap is of interest in many other branches of machine

learning: In domain adaptation, the overlap between source and target domains is

the set of inputs for which we can expect a trained model to transfer well (Ben-David

et al., 2010; Johansson et al., 2019); In classification, overlap between inputs with

different labels signifies regions that are hard to classify; In algorithmic fairness (Dwork

et al., 2012), overlap between protected groups may shed light on disparate treatment

of individuals from different groups who are otherwise comparable in task-relevant

characteristics; In reinforcement learning, lack of overlap has been identified as a

failure mode for deep Q-learning using experience replay (Fujimoto et al., 2019).

Our main contributions are as follows: (i) We propose desiderata in overlap estimation,

and note how existing methods fail to satisfy them. (ii) We give a method for

interpretable characterization of distributional overlap, which satisfies these desiderata,

by reducing the problem to two binary classification problems, and using a linear

programming relaxation of learning optimal Boolean rules. (iii) We give generalization

bounds for rules minimizing empirical loss. (iv) We demonstrate that small rules

often perform comparably to black-box estimators on a suite of real-world tasks.
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𝜂" 𝑥 ∈ 𝜖, 1 − 𝜖 𝒪*,+

𝒮*

ℬ+

Treated𝑥∗ ∈ ℬ ∖ 𝒪

Control
Figure 3-1: Overlap 𝒪𝛼,𝜖 between treatment groups with joint support 𝒮𝛼. A point 𝑥*

has group propensity 𝜂𝑡 bounded away from 0 and 1, but is outside of 𝒪𝛼,𝜖.

(v) We evaluate the interpretability of rules for describing treatment group overlap in

post-surgical opioid prescription in a user study with medical professionals. (vi) We

show how a generalized definition and method applies to policy evaluation and apply

it to describing overlap in policies for antibiotic prescription.

3.2 Related work

Treatment group overlap is a central assumption in the estimation of causal effects

from observational data. Comparing group-specific covariate bounds and lower-

order moments is a common first step in assessing overlap (Rosenbaum et al., 2010;

Zubizarreta, 2012; Fogarty et al., 2016) but fails to identify local regions of overlap

when they exist (see the example of 𝒪𝛼,𝜖 in Figure 3-1). An alternative is to estimate

the treatment propensity—the probability that a subject was prescribed treatment.

Treatment propensities bounded away from 0 and 1 at a point 𝑋 indicates that

treatment groups overlap at 𝑋 (Rosenbaum and Rubin, 1983b; Li et al., 2018b).

In studies with partial overlap, it is common to restrict the study cohort by thresholding

treatment propensity or discarding unmatched subjects after applying matching
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methods (Rosenbaum, 1989; Iacus et al., 2012; Kallus, 2016; Visconti and Zubizarreta,

2018). For example, Crump et al. (2009) proposed an optimal propensity threshold that

minimizes the variance of the estimated average treatment effect on a sub-population.

However, neither propensity thresholding nor matching are sufficient for guiding policy

in new cases: they do not provide a self-contained, interpretable description of where

treatment groups overlap within the study, nor do they provide insight into external

validity by describing the limits of the study cohort.

Fogarty et al. (2016) address the first concern above by learning “interpretable study

populations”through identifying the largest axis-aligned box that contains only subjects

with bounded propensity. However, this approach is very limited in capacity and

does not address external validity. For this reason, we strive to provide interpretable

descriptions of overlap, both in terms of treatment propensity and the study support.

Rule-based models have been considered in classification tasks (Rivest, 1987; Angelino

et al., 2017; Yang et al., 2017; Lakkaraju et al., 2016; Wang et al., 2017; Dash et al.,

2018; Freitas, 2014; Wang and Rudin, 2015), subgroup discovery (Herrera et al., 2011)

and density estimation (Ram and Gray, 2011; Goh and Rudin, 2015) but have to the

best of our knowledge not been applied or tailored to support or overlap estimation.

3.3 Defining Overlap

We address interpretable description of population overlap. Our primary motivation

is to aid policy making based on observational studies, the success of which relies on

understanding and communicating the studies’ validity region—the set of cases for

which there is evidence that a particular policy decision is preferable. We identify

the following desiderata for descriptions of overlap: (D.1) They cover regions where

all populations (treatment groups) are well-represented; (D.2) They exclude all other

regions, including those outside the support of the study (see Figure 3-1); (D.3) They

can be expressed using a small set of simple rules. Next, we define overlap according

to (D.1) and (D.2). We address (D.3) in Section 3.4.
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Let subjects 𝑖 = 1, ..., 𝑚 be observed through samples (𝑥𝑖, 𝑡𝑖) of covariates 𝑋 ∈ 𝒳 ⊆ R𝑑

and a group indicator 𝑇 ∈ 𝒯 . In our running example, 𝑋 represents patient attributes

and 𝑇 their treatment. We assume that subjects are independently and identically

distributed according to a density 𝑝(𝑋, 𝑇 ), and that 𝒳 is bounded. Let 𝑝𝑡(𝑋) := 𝑝(𝑋 |

𝑇 = 𝑡) denote the covariate density of group 𝑡 ∈ 𝒯 and 𝜂𝑡(𝑥) := 𝑝(𝑇 = 𝑡 | 𝑋 = 𝑥)

the propensity of membership in group 𝑡 ∈ 𝒯 for subjects with covariates 𝑥 ∈ 𝒳 .

We denote the probability mass of a set 𝑆 ⊆ 𝒳 under 𝑝 by 𝑃 (𝑆) :=
∫︀
𝑥∈𝑆 𝑑𝑝 and the

support of 𝑝 by supp(𝑝) := {𝑥 ∈ 𝒳 : 𝑝(𝑥) > 0}.

In the common case of two groups, 𝒯 = {0, 1}, overlap is typically defined as either a)

the intersection of supports, supp(𝑝0) ∩ supp(𝑝1), or b) the set of covariate values for

which all group propensities 𝜂𝑡 are bounded away from zero (D’Amour et al., 2017; Li

et al., 2018b). We let ℬ𝜖 denote this latter set of values with 𝜖-bounded propensity for

a fixed parameter 𝜖 ∈ (0, 1) and an arbitrary set of groups 𝒯 ,

ℬ𝜖 := {𝑥 ∈ 𝒳 ;∀𝑡 ∈ 𝒯 : 𝜂𝑡(𝑥) > 𝜖} . (3.1)

Neither ℬ𝜖 nor the support intersection fully capture our desired notion of overlap:

The former does not satisfy (D.2) since a point may have bounded propensity (true or

estimated) but lie outside the population support supp(𝑝) (see Figure 3-1). Note that

interpretable description alone does not address this. The latter is non-informative for

variables with infinite support (e.g., a normal random variable), and even with finite

support, we may wish to exclude distant outliers.

Our preferred definition of overlap combines the requirement of bounded propensity

with a generalization of support called 𝛼-minimum-volume sets (Schölkopf et al., 2001).

Let C be a set of measurable subsets of 𝒳 , let 𝑉 (𝐶) denote the volume of a set 𝐶 ∈ C.

An 𝛼-minimum-volume set 𝒮𝛼 of 𝑝 is then

𝒮𝛼 := argmin
𝐶
{𝑉 (𝐶) ;𝑃 (𝐶) ≥ 𝛼,𝐶 ∈ C} , (3.2)

with 𝒮1 = supp(𝑝). For 𝛼 < 1, 𝒮𝛼 is not always unique, but the intersection 𝑆 of
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two 𝛼-MV sets has mass 𝑃 (𝑆) ≥ 2𝛼 − 1. In this work, we let 𝛼 < 1 in order to

handle distributions with infinite support and unwanted outliers, and refer to 𝒮𝛼 as

the support of 𝑝. We define the 𝛼, 𝜖-overlap set, for 𝛼, 𝜖 ∈ (0, 1), to be

𝒪𝛼,𝜖 := 𝒮𝛼 ∩ ℬ𝜖 . (3.3)

We define the problem of overlap estimation under definition (3.3) as characterizing

the set 𝒪𝛼,𝜖 given thresholds 𝛼 and 𝜖. In line with (D.3), these characterizations should

be useful in policy making, and interpretable by domain experts, at small cost in

accuracy. For notational convenience, we sometimes leave out superscripts from 𝒮𝛼,ℬ𝜖

and 𝒪𝛼,𝜖, assuming that 𝛼, 𝜖 are fixed.

Remark. Defining overlap instead as the intersection of group-specific 𝛼-MV sets is

feasible, but scales poorly with |𝒯 |; it does not facilitate the generalization to policy

evaluation described below; and the intersection of many descriptions may be hard to

interpret.

3.3.1 Generalization to Policy Evaluation

The definition of ℬ𝜖 in (3.1) is motivated by causal effect estimation—comparison of

outcomes under two or more alternative interventions. We may instead be interested in

policy evaluation, which involves estimating the expected outcome under a conditional

intervention 𝜋, which assigns a treatment 𝑡 to each 𝑥 following a conditional distribution

𝜋(𝑇 |𝑋) (Precup et al., 2000). To perform this evaluation, we only require that the

propensity 𝑝(𝑇 |𝑋) of observed treatments be bounded away from zero for treatments

which have non-zero probability under 𝜋. To describe the inputs for which this is

satisfied, we generalize ℬ𝜖 to be a function of the target policy 𝜋,

ℬ𝜖(𝜋) := {𝑥 ∈ 𝒳 ;∀𝑡 : 𝜋(𝑡 | 𝑥) > 0 : 𝜂𝑡(𝑥) > 𝜖} . (3.4)

More details are given in the supplement regarding the use of OverRule in this setting.
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3.4 Overrule: Boolean Rules for Overlap

We propose OverRule1, an algorithm for identifying the overlap region 𝒪 in (3.3) by

first estimating the 𝛼-MV support set 𝒮 (3.2) and then the bounded-propensity set

ℬ (3.1) restricted to 𝒮, thereby satisfying desiderata (D.1)–(D.2). We aim to fulfill

desideratum (D.3) by using Boolean rules—logical formulae in either disjunctive (DNF)

or conjunctive (CNF) normal form—which have received renewed attention because

of their interpretability (Dash et al., 2018; Su et al., 2016). See Figures 3-3–3-4 for

examples of learned rules. OverRule proceeds in the following steps:

(i) Fit 𝛼-MV set �̂�
𝛼
of 𝑝(𝑋) using Boolean rules

(ii) Fit model of group propensity 𝜂(·) over �̂�
𝛼
and let �̃�(𝑥) =

∏︀
𝑡∈𝒯 1[𝜂𝑡(𝑥) > 𝜖]

define membership in ℬ̃𝜖

(iii) Approximate ℬ̃𝜖
using Boolean rules to yield ℬ̂

𝜖
and estimate overlap region by

�̂�
𝛼,𝜖

= ℬ̂
𝜖
∩ �̂�

𝛼
.

In this section, we demonstrate how steps (i) & (iii) can be reduced to binary clas-

sification. This enables us to exploit the many existing methods for rule-based

classification (Freitas, 2014) to improve the interpretability of �̂�. Finally, we give

results bounding the generalization error of estimates of both 𝒮 and 𝒮 ∩ ℬ.

Remark. It was observed in evaluations with a medical practitioner that fitting rules

for 𝒮 and ℬ separately improved interpretability as it makes clear which rules apply

to which task and prevents the bulk of the rules from being consumed by one of the

two tasks.

3.4.1 Estimation of 𝑆𝛼 as Binary Classification

In the first step of OverRule, we learn a Boolean rule to approximate the 𝛼-MV set

𝒮𝛼 of the marginal distribution 𝑝(𝑋) by reducing the problem to binary classification

1Code available at https://github.com/clinicalml/overlap-code
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between observed samples 𝒟 := {𝑥𝑖}𝑚𝑖=1 and uniform background samples. For

clarity, we focus only on DNF rules—disjunctions of conjunctive clauses such as

(Age < 30 ∧ Female) ∨ (Married). As pointed out by Su et al. (2016), a CNF rule can

be learned by swapping class labels and fitting a DNF rule.

We adapt previous notation and let C be a class of candidate 𝛼-MV sets 𝒞 corresponding

to Boolean rules, i.e., each 𝒞 consists of the points in 𝒳 that satisfy a rule. We will

often not distinguish between a rule and its corresponding set 𝒞 and thus will speak of

the “volume” of a rule or clause. We aim to solve a normalized and regularized version

of the 𝛼-MV problem in (3.2),

argmin
𝒞∈C

𝑄(𝒞) := 𝑉 (𝒞)
Volume

+ 𝑅(𝒞) s.t.
Regularization

𝑃 (𝒞) ≥ 𝛼
Coverage

(3.5)

where the volume 𝑉 (𝒞) = 𝑉 (𝒞)/𝑉 (𝒳 ) ∈ [0, 1] is normalized to that of 𝒳 . We assume

that the regularization term 𝑅(𝒞) controls complexity by placing penalties 𝜆0 on each

clause in the rule and 𝜆1 on each condition in a clause. Thus, for a Boolean rule with

clauses 𝑘 = 1, . . . , 𝐾, each with 𝑝𝑘 conditions, we have2

𝑅(𝒞) = 𝐾𝜆0 + 𝜆1

𝐾∑︁
𝑘=1

𝑝𝑘. (3.6)

It is also assumed that the trivial “all-true” and “all-false” rules have complexity

𝑅(𝒞) = 0.

The volume 𝑉 (𝒞) may be difficult to compute repeatedly during optimization and C is

often too large to allow pre-computation of 𝑉 (𝒞) for all 𝒞. In particular, for DNF rules,

each 𝒞 is a union of potentially several overlapping clauses (see Figures 3-3–3-4 or the

illustration in the supplement); even if the volume spanned by each clause is quick to

compute on the fly, the overall volume may not be. As an alternative, the normalized

volume 𝑉 (𝒞) can be estimated by means of uniform samples {𝑥𝑚+1, . . . , 𝑥𝑚+𝑛} over 𝒳 .

Let 𝒰 be the index set of these uniform samples. Then, 1
𝑛

∑︀
𝑖∈𝒰 1[𝑥𝑖 ∈ 𝒞] is distributed

2It is possible to generalize (3.6) to place different penalties on different conditions but we adopt
(3.6) for simplicity.
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as a scaled binomial random variable with mean 𝑉 (𝒞) and variance 𝑉 (𝒞)(1− 𝑉 (𝒞))/𝑛.

Theorem 3.1 below provides guidance in selecting the number of uniform samples 𝑛 to

ensure a good estimate.

Given the above empirical estimator of volume, we reduce problem (3.5) to a classifi-

cation problem between the marginal density 𝑝(𝑋) and a uniform distribution over 𝒳 .

This reduction was also mentioned in the conclusion of Scott and Nowak (2006). We

also replace the probability mass constraint with its empirical version over 𝒟 with

ℐ = {1, . . . ,𝑚}. The result is a Neyman-Pearson-like classification problem with a

false negative rate constraint of 1− 𝛼 (instead of the usual false positive constraint),

as given below.

�̂� := argmin
𝒞

1

|𝒰|
∑︁
𝑖∈𝒰

1[𝑥𝑖 ∈ 𝒞] +𝑅(𝒞)

subject to
∑︁
𝑖∈ℐ

1[𝑥𝑖 ∈ 𝒞] ≥ 𝛼𝑚 .
(3.7)

The following theorem bounds the regret of the minimizer of (3.7) with respect to

(3.5) and is proven in the supplement. The assumption of binary variables simplifies

the analysis and is not a fundamental limitation.

Theorem 3.1. Let 𝑞*(𝛼) denote the minimum regularized volume attained in (3.5) over

the class of DNF rules with probability mass 𝛼. Assume that a) the regularization 𝑅

follows (3.6) with fixed parameters 𝜆0, 𝜆1, b) all variables 𝑋𝑗 are binary-valued, and

c) the class C is restricted to rules satisfying necessary conditions of optimality for

(3.5) (see Lemmas in the supplement). Then with probability greater than 1− 2𝛿, the

empirical estimate �̂� in (3.7) satisfies

𝑄(�̂�) ≤ 𝑞*(𝛼 + 𝜖𝑚) + 2𝜖𝑛 and 𝑃 (�̂�) ≥ 𝛼− 𝜖𝑚,

where 𝜖𝑚 =

√︁
𝜆−1
1 log(2𝑑)+⌊1+log2 𝜆

−1
1 ⌋ log 𝜆−1

1 +log(4/𝛿)

2𝑚
and 𝜖𝑛 is defined analogously.

Remark. The error term 𝜖𝑚 bounds the amount by which the probability constraint

may be violated and contributes 𝑞*(𝛼 + 𝜖𝑚)− 𝑞*(𝛼) to the possible regret. Given the

number of data samples 𝑚, penalty 𝜆1 (𝜆0 does not appear in this simplified bound)
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could be chosen to keep 𝜖𝑚 small, although user preferences for rule complexity are

likely to be more important in setting 𝜆0, 𝜆1. Given 𝜆1, the number of uniform samples

𝑛 could in turn be chosen to reduce 𝜖𝑛. Note that 𝜖𝑚, 𝜖𝑛 are largely controlled by 𝜆1

and depend only logarithmically on the dimension 𝑑.

3.4.2 Estimation of ℬ𝜖 as Binary Classification

To estimate the set ℬ𝜖 of inputs with bounded group propensity 𝜂𝑡(𝑋) := 𝑝(𝑇 = 𝑡 | 𝑋),

we follow in the tradition of using black-box (potentially non-parametric) estimators

of propensity to identify overlapping or balanced cohorts in the study of causal

effects (Crump et al., 2009; Fogarty et al., 2016). This is typically done by fitting a

classifier (e.g., logistic regression) for predicting 𝑇 given 𝑋, and letting 𝜂𝑡(𝑥) be the

estimated probability of class 𝑡 for input 𝑥. Given such an estimate, we assign a label

�̃�𝑖 to each data point 𝑥𝑖 ∈ 𝒟 indicating significant propensity for every group,

∀𝑖 ∈ [𝑚] : �̃�𝑖 =
∏︁
𝑡∈𝒯

1[𝜂𝑡(𝑥𝑖) ≥ 𝜖] . (3.8)

Let ℬ̃ = {𝑥𝑖 : �̃�𝑖 = 1}. Similar to the case of 𝒮𝛼, we may now reduce estimation

of ℬ𝜖 to binary classification. Given �̂�, the minimizer of (3.7), we again set up a

Neyman-Pearson-like classification problem, now regarding the intersection �̂� ∩ ℬ̃ as

the positive class:

ℬ̂ := argmin
𝐶

1

|�̂� ∖ ℬ̃|

∑︁
𝑖:𝑥𝑖∈�̂�∖ℬ̃

1[𝑥𝑖 ∈ 𝒞] +𝑅(𝒞) (3.9)

subject to
∑︁

𝑖:𝑥𝑖∈�̂�∩ℬ̃

1[𝑥𝑖 ∈ 𝒞] ≥ 𝛽|�̂� ∩ ℬ̃| .

The sets �̂� ∖ℬ̃ and �̂�∩ℬ̃ are defined by the solution to (3.7) and the base estimator (3.8).

To accommodate the policy evaluation setting described in Section 3.3, we can modify

the pseudo-labels defined in (3.8) to be �̃�𝑖(𝜋) =
∏︀

𝑡∈𝜋(𝑥𝑖)
1[�̂�(𝑇 = 𝑡 | 𝑋 = 𝑥𝑖) ≥ 𝜖],

where 𝜋(𝑥𝑖) := {𝑡 : 𝜋(𝑡|𝑥𝑖) > 0}, and solve (3.9) using ℬ̃(𝜋) = {𝑥𝑖 : �̃�𝑖(𝜋) = 1} in place
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of ℬ̃. The resulting full procedure is given in the supplement.

Generalization of the final estimator. In the supplement, we state and prove a

theorem bounding the generalization error of our final estimator, �̂� = �̂� ∩ ℬ̂. It shows

that for good base estimators �̂�, ℬ̃, the error of �̂� with respect to the true overlap 𝒪

is dominated by its error with respect to the base estimators. Hence, practitioners

may make an informed tradeoff between accuracy and interpretability based on this

metric.

3.4.3 Optimizing Boolean Rules

Next, we describe a procedure for optimizing (3.7) over a class C of Boolean DNF

rules. The same procedure also solves (3.9).

We assume that base features 𝑋 have been binarized to form literals such as (Age > 30)

or (Sex = Female), as is standard in e.g. decision tree learning. A conjunction may

thus be represented as the product of binary indicators of these literals. We let

𝒦 index the set of all possible (exponentially many) conjunctions of literals, e.g.

(Age > 30) ∧ Female. Then, for 𝑘 ∈ 𝒦, let 𝑎𝑖𝑘 ∈ {0, 1} denote the value taken by the

𝑘-th conjunction at sample 𝑥𝑖. Let the DNF rule be parametrized by 𝑟 ∈ {0, 1}|𝒦|

such that 𝑟𝑘 = 1 indicates that the 𝑘-th conjunction is used in the rule.

Define an error variable 𝜉𝑖 for 𝑖 in 𝒰 ∪ ℐ representing the penalty for covering or

failing to cover point 𝑖, depending on its set membership. Then, problem (3.7) may
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be reformulated as follows,

minimize
𝑟

1

|𝒰|
∑︁
𝑖∈𝒰

𝜉𝑖 +𝑅(𝑟) (3.10)

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑟𝑘 ∈ {0, 1}, 𝑘 ∈ 𝒦,

𝜉𝑖 ≥ 1−
∑︁
𝑘∈𝒦

𝑎𝑖𝑘𝑟𝑘, 𝜉𝑖 ≥ 0, 𝑖 ∈ ℐ,∑︁
𝑖∈ℐ

𝜉𝑖 ≤ (1− 𝛼)𝑚

𝜉𝑖 = max
𝑘∈𝒦

(𝑎𝑖𝑘𝑟𝑘), 𝑖 ∈ 𝒰 .

Problem (3.10) is an IP with an exponential number of variables and is intractable as

written. We follow the column generation approach of Dash et al. (2018) to effectively

manage the large number of variables and solve (3.10) approximately. As in that

previous work, we bound from above the max in the last constraint of (3.10) with the

sum (Hamming loss instead of zero-one loss) as it gives better numerical results. The

choice of regularization in (3.6) implies 𝑅(𝑟) =
∑︀

𝑘∈𝒦 𝜆𝑘𝑟𝑘 with 𝜆𝑘 = 𝜆0 + 𝜆1𝑝𝑘. Thus

the objective becomes linear in 𝑟,
∑︀

𝑘∈𝒦
(︀
1/|𝒰|

∑︀
𝑖∈𝒰 𝑎𝑖𝑘 + 𝜆𝑘

)︀
𝑟𝑘, and the 𝜉𝑖, 𝑖 ∈ 𝒰

constraints are absorbed into the objective. We then follow the overall procedure in

(Dash et al., 2018) of solving the linear programming (LP) relaxation, using column

generation to add variables only as needed.

We make the following departures from Dash et al. (2018). As noted, (3.10) has a

constraint on false negative rate instead of a corresponding objective term and a

complexity penalty 𝑅(𝑟) while Dash et al. (2018) use a constraint. As a result, the

LP reduced costs, needed for column generation, are different. With dual variables

𝜇𝑖 ≥ 0, 𝑖 ∈ ℐ corresponding to the 𝜉𝑖, 𝑖 ∈ ℐ constraints in (3.10), the reduced cost

of conjunction 𝑘 is now 1/|𝒰|
∑︀

𝑖∈𝒰 𝑎𝑖𝑘 + 𝜆𝑘 −
∑︀

𝑖∈ℐ 𝜇𝑖𝑎𝑖𝑘, which remains a linear

function of 𝑎𝑖𝑘, allowing the same column generation method to be used. We also

avoid the need for an IP solver as used in Dash et al. (2018) by a) solving the column

generation problem using a beam search algorithm from (Wei et al., 2019), and b)

restricting (3.10) to the final columns once column generation terminates, converting

to a weighted set cover problem, and applying a greedy algorithm to obtain an integer
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solution.

3.5 Experiments

In our experiments, we seek to address the following questions, while relating the

performance of OverRule to that of MaxBox (MB) (Fogarty et al., 2016), which

is also designed to produce interpretable study populations. (i) Why is support

estimation important? In Section 3.5.1 we give a conceptual illustration using the Iris

dataset, where MaxBox returns a description that empirically includes a large space

outside of the true overlap region. (ii) How well does OverRule approximate the

base estimators / true overlap region? In Section 3.5.2 we use the Jobs (LaLonde,

1986) dataset to show that performance of OverRule is comparable to that of the

base estimators, and generally surpasses the performance of MaxBox. (iii) Do the

resulting rules yield any insights? We apply OverRule to overlap estimation in two

real-world clinical datasets on (1) post-surgical opioid prescriptions, and (2) policy

evaluation in antibiotic prescriptions. For the former, we conducted a user study with

three clinicians to interpret and critique the output, with additional comparison to

the output of MaxBox.

OverRule and MaxBox algorithms are both meta-algorithms in the sense that they take

(as input) labels indicating whether each data point is in the overlap set. To generate

these labels, we use a variety of base overlap estimators: (i) Covariate Bounding

Boxes: The intersection of covariate (marginal) bounding boxes (CBB), analogous

to classical balance checks in causal inference. The bounding boxes are selected to

cover the [(1− 𝛼)/2, (1 + 𝛼)/2] quantiles of the data. (ii) Propensity Score Estimators :

Standard propensity score estimators as described in (3.8) and Crump et al. (2009)

with logistic regression (PS-LR) or 𝑘-nearest neighbors (PS-𝑘NN) estimates of the

propensity. These can be viewed as a binary version of overlap weights (Li et al.,

2018b). (iii) One-Class SVMs : One-Class Support Vector Machines (OSVM) to first

estimate conditional supports and then use their intersection as overlap labels. Details
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Figure 3-2: Overlap (orange stripes) between Versicolor (blue circles) and Virginica
(red triangles) species in the Iris dataset as identified by OverRule (left) and MaxBox
(right) using the same base estimator of propensity. Black stars indicate samples of
the (unobserved) Setosa species. We see that MaxBox identifies several of the Setosa
samples as being in the overlap set, despite it being outside of the support of the
observed data.

on hyperparameter selection and feature binarization are given in the supplement,

along with general guidance on hyperparameter selection depending on user goals,

from optimizing an observable metric (e.g., accuracy w.r.t the base estimator), to

generating shorter rule sets, to exploring structure in the data.

3.5.1 Illustrative Example: Iris

We use the Iris dataset to illustrate the importance of combining explicit support

estimation (lacking in MaxBox) with an interpretable characterization of the overlap

region (lacking in propensity score models). We use OverRule to identify the overlap

between members of two species of Iris, as represented by their sepal and petal

dimensions. In Figure 3-2, we visualize the estimates �̂� learned using OverRule and

MaxBox in the space of sepal length and width. In contrast, the coefficients of a

logistic regression propensity score model, [−1.7,−1.5, 2.5, 2.6]⊤ reveal very little about

which points lie in the overlap set.
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Table 3.1: Overlap estimation in Jobs. Balanced accuracy (Acc), false positive rate
(FPR), false negative rate (FNR), and number of literals (L) with standard deviations
over 5-fold CV. MB and OR indicate MaxBox and OverRule. MB did not run with
CBB.

Acc FPR FNR L

Baselines (base estimators):
CBB 0.75± 0.02 0.12± 0.01 0.38± 0.03 —
OSVM 0.82± 0.01 0.22± 0.03 0.14± 0.02 —
PS-𝑘-NN 0.90± 0.02 0.14± 0.02 0.05± 0.02 —
PS-LR 0.96± 0.01 0.10± 0.01 0.09± 0.03 —

MaxBox with base estimator:
OSVM 0.68± 0.01 0.09± 0.02 0.54± 0.01 16
PS-𝑘NN 0.84± 0.01 0.03± 0.01 0.29± 0.02 16
PS-LR 0.80± 0.02 0.04± 0.01 0.35± 0.04 16

OverRule with base estimator:
CBB 0.83± 0.01 0.16± 0.01 0.19± 0.02 20
OSVM 0.84± 0.02 0.25± 0.03 0.07± 0.02 23
PS-𝑘NN 0.89± 0.02 0.16± 0.02 0.06± 0.02 40
PS-LR 0.88± 0.02 0.15± 0.04 0.09± 0.01 21

3.5.2 Job Training Programs

In this section, we demonstrate that OverRule compares favorably to MaxBox in

terms of approximating both the derived overlap labels (using a base estimator), as

well as the “ground truth” overlap labels in a real dataset. To do so, we use data from

a famous trial performed to study the effects of job training (LaLonde, 1986; Smith

and Todd, 2005), in which eligible US citizens were randomly selected into (𝑇 = 1),

or left out of (𝑇 = 0) job training programs. The RCT (𝐸 = 1), which satisfies

overlap by definition, has since been combined with non-experimental control samples

(𝐸 = 0, 𝑇 = 0), forming a larger observational set (Jobs), to serve as a benchmark for

causal effect estimation (LaLonde, 1986). Here, we aim to characterize the overlap

between treated and control subjects.

Due to the trial’s eligibility criteria, the experimental and non-experimental co-

horts barely overlap; standard logistic regression separates the experimental and

non-experimental groups with held-out balanced accuracy of 0.96. Since all treated
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AND NOT Rule S.4:

Hispanic

and RE75 > $26k

Age ≤ 27 y.o

and ¬ Degree

Rule B.1:

Support rules 𝓢

Overlap rules 𝓑

AND NOT Rule S.3:

¬Married

and RE75 > $32k

NOT Rule S.1:

Yrs. Edu. > 11

and ¬ Degree

and RE74 > $33k

AND NOT Rule S.2:

Yrs. Edu. > 11

and ¬ Degree

and RE75 > $32k

AND NOT Rule S.6:

RE74 > $33k

and RE75 in (0, $26k] 

AND NOT Rule S.7:

RE74 in (0, $26k]

and RE75 > $32k 

AND NOT Rule S.5:

Black

and Hispanic

Black

and ¬Married

OR Rule B.2:

RE75 ≤ $10k

and ¬Married

OR Rule B.3:

Figure 3-3: OverRule description of the overlap region 𝒪 in the Jobs dataset learned
using the LR propensity base estimator, achieving held-out balanced accuracy of 0.88.
¬ indicates a negation, and CNF support rules are given with rule-level negations
applied for readability. If none of the support rules (top) and any of the overlap rules
(bottom) apply, a subject is in 𝒪.
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subjects were part of the experiment, the experimental cohort perfectly represents the

overlap region. For this reason, we use the experiment indicator 𝐸 as ground truth for

𝒪, at the risk of introducing a small number of false negatives. In studies of causal

effects in this data, the following features were included to adjust for confounding:

Age, #Years of education (Educ), Race (black/hispanic/other), Married, No degree

(NoDegr), Real earnings in 1974 (RE74) and 1975 (RE75). These are the features 𝑋

for which we estimate overlap.

We present results in Table 3.1 and Figure 3-3, where all balanced accuracies are

w.r.t. the ground truth indicator 𝐸. For the propensity base estimators, the OverRule

approximations achieve slightly lower balanced accuracies than the base estimator, but

with a simpler description, while for the other base estimators the accuracy is actually

better. OverRule compares favorably to MaxBox on balanced accuracy, although

MaxBox generally achieves a lower FPR, likely because it does not try to retain a

fixed fraction 𝛽 of the overlap set. In the supplement, we show that the held-out

balanced accuracy quickly converges as the number of literals in the rules increases

and correlates strongly with the quality by which the rule set approximates the base

estimator.

The learned support rules in Figure 3-3 demonstrate that support estimation can find

gaps in the dataset that are intuitive, such as a lack of individuals with high income

but no degree (Rules S.1-2) or whose income changes dramatically from 1974 to 1975

(Rules S.6-7). The learned overlap rules conform to expectations, as the eligibility

criteria for the RCT allow only subjects who were currently unemployed and had

been so for most of the time leading up to the trial—factors that correlate with age

and education (Rule B.1), previous income (Rule B.3), and marital status (Rules

B.2-3) (Smith and Todd, 2005).
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3.5.3 Post-surgical Opioid Prescriptions

Opioid addiction affects millions of Americans. Understanding the factors that influence

the risk of addiction is thus of great importance. To this end, Brat et al. (2018) and

Zhang et al. (2017) study the effect of choices in opioid prescriptions on the risk of

future misuse. Here, we study a group of post-surgical patients who were given opioid

prescriptions within 7 days of surgery, replicating the cohort eligibility criteria of Brat

et al. (2018) using a subset of the MarketScan insurance claims database. We compare

groups of patients with morphine milligram equivalent (MME) doses above and below

the 85th percentile in the cohort, MME=450. Subjects were represented by basic

demographics (age, sex), diagnosis history, and procedures billed as surgical on the

index date (not mutually exclusive). Cohort statistics are given in the supplement. We

fit three models: An OverRule model (OR) using DNF support rules and a random

forest base estimator, a MaxBox model (MB) (Fogarty et al., 2016) with the same

base estimator, and another OverRule model describing the complement of 𝒪 (OR-C).

The balanced accuracies of these models w.r.t. the base were 0.90 (OR), 0.77 (MB)

and 0.92 (OR-C). Learning took 10 minutes for OverRule (Python) and 7 minutes for

MaxBox (R). Other hyperparameter details are in the supplement.

In Figure 3-4, we summarize the rules learned by OR which cover 27% of the overall

population. MB learned: (Musculoskeletal surg. ∧ ¬Mediastinum surg. ∧ ¬Male genital

surg. ∧ ¬Maternity surg. ∧ ¬Lumbosacral spondylosis without myelopathy) which covers

17% of patients. The rules learned by OR-C are presented in the supplement.

To evaluate the interpretability of the output, we conducted a qualitative user study

through a moderated discussion with three participants: two attending surgeons (P1 &

P2) and a 4th year medical student (P3) at a large US teaching hospital. Before seeing

the outputs of any method, the participants were asked to give their expectations for

what to find in the overlap set.

The participants expected that the overlap set would mostly correspond to patients in

the higher dose range, as these patients are often considered also for smaller doses,
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Rule S.1:

History: and Surgical procedure:
¬ Injury of face and neck ¬ Endocrine system

and ¬ Unspecified septicemia and ¬ Mediastinum (thoracic cavity)

and ¬ Other injury of chest wall and ¬Auditory system
and ¬ Acute respiratory failure and Age ∈ [0, 64]
and ¬ Altered mental status 

Rule B.1:

Surgical procedure:
Musculoskeletal

or Rule B.2:

Age > 44
and Male
and Surgical procedure:

Cardiovascular
and ¬ Urinary system (e.g, bladder)
and ¬ Male genital system

or Rule B.3:

Surgical procedure:
Nervous (e.g., epidural)

and ¬ Maternity (e.g., C-section)
and ¬ Female genital system
or Rule B.4:

Age > 23
and Surgical procedure:

¬ Maternity
and History:

Thoracic or lumbosacral 
neuritis or radiculitis

𝒪( = S.1 ∧ (B.1 ∨ B.2 ∨ B.3 ∨ B.4)Support rules 𝒮

Propensity overlap rules ℬ

Figure 3-4: OverRule description of post-surgical patients likely to receive both high
and low opioid doses. A patient is in the overlap set if the support rule (top) applies
and any propensity overlap rule (bottom) applies. ¬ indicates negation. The rules
cover 27% of patients with balanced accuracy of 0.90 w.r.t. the base estimator. Surgical
procedures are not mutually exclusive.

and that overlap would be driven largely by surgery type. All participants expected

Musculoskeletal and Cardiovascular surgery patients to be predominantly in the

higher dose group, and sometimes in the lower, and one suggested that Maternity

surgeries (e.g., C-sections) would be only in the lower range. These comments are all

consistent with the findings of OverRule, which identified all of these surgery types as

important. MaxBox identified only Musculoskeletal surgery patients as overlapping.

One participant expected history of psychiatric disease and Tobacco use disorder to

be predictive of higher prescription doses for some patients, and thus overlap. Neither

method identified psychiatric disease, but Tobacco use disorder was identified by OR-C
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as predictive (see supplement).

The participants found the support rules (�̂�) output by OR (Figure 3-4 top) intuitive.

P1 stated that Endocrine surgeries are not typically followed by opioid prescriptions.

They found the MaxBox and OR rule descriptions easy to interpret, and discussion

focused on their clinical meaning. The first three propensity overlap rules B.1-B.3 were

all consistent with expectation as described above, with the caveat that Cardiovascular

patients are not typically stratified by Urinary and Genital surgeries. This was later

partially explained by catheters being billed as Urinary and P3 interpreted this as a

proxy for more severe Cardiovascular surgeries. P1 pointed out the value in discovering

such surprising patterns that may be hidden in black-box analyses. The OR-C rules

were found hard to interpret due to many double negatives (“excluded from exclusion”),

but were ultimately deemed clinically sound.

Remark: We noted that these support rules primarily exclude individually rare

features, in lieu of e.g., finding that certain non-rare surgery types do not co-occur.

This motivated both (1) an empirical study (w/semi-synthetic data) of how support

rule hyperparameters influence the recovery of these interactions, and (2) the generation

of new rules. Both are in the supplement.

3.5.4 Policy Evaluation of Antibiotic Prescription Guidelines

Using the policy evaluation formulation of ℬ𝜖(𝜋) (Section 3.3.1), we apply OverRule to

assess overlap for a policy that follows clinical guidelines published by the Infectious

Disease Society of America (IDSA) for treatment of uncomplicated urinary tract

infections (UTIs) in female patients (Gupta et al., 2011). Using medical records from

two academic medical centers, we apply OverRule to a cohort of 65,000 UTI patients

to test whether it can recover a clinically meaningful overlap set. From a qualitative

perspective, we discussed the resulting rules with an infectious disease specialist, who

verified that they have a clear clinical interpretation as identifying primarily outpatient

cases and uncomplicated inpatient cases, which are where the guidelines are applied in
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practice. Detailed results (including quantitative results) are given in the supplement.

3.6 Conclusion

We have presented OverRule—an algorithm for learning rule-based characterizations

of overlap between populations, or the inputs for which policy evaluation from obser-

vational data is feasible. The algorithm learns to exclude points that are marginally

out-of-distribution, as well as points where some population/policy has low density.

We gave theoretical guarantees for the generalization of our procedure and evaluated

the algorithm on the task of characterizing overlap in observational studies. These

results demonstrated that our rule descriptions often have similar accuracy to black-

box estimators and outperform a competitive baseline. In an application to study

treatment-group overlap in post-surgical opioid prescription, a qualitative user study

found the results interpretable and clinically meaningful. Similar observations were

made in an application to evaluation of antibiotic prescription policies. Future research

challenges include investigating the scalability of the method with the dimensionality

of the input.
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Chapter 4

Falsification before Extrapolation in

Causal Effect Estimation

This chapter (and accompanying appendix) was previously published as (Hussain et al.,

2022) at NeurIPS 2022, and is presented here with minor typographical changes.

4.1 Introduction

Policy guidelines often rely on conclusions from Randomized Controlled Trials (RCTs),

whether considering treatment decisions in healthcare, classroom interventions in

education, or social programs in economics (Keum et al., 2019; Cloyd et al., 2020;

Prete et al., 2018). In healthcare, when a target population has reasonable overlap with

the inclusion criteria of RCTs, current clinical treatment guidelines rely primarily on

RCTs (Guyatt et al., 2008b,a). For target populations not well-represented in RCTs,

observational studies are often used to infer treatment effects. However, different

observational estimates can give conflicting conclusions. We give an example of this

tension when looking at a new chemotherapy for multiple myeloma.

Example 4.1 (Carfilzomib-based Combination Therapy for Newly Diagnosed Multiple

Myeloma (NDMM)). Until 2020, the effect of Carfilzomib-based combination therapy
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in the NDMM subpopulation had not been studied via an RCT. However, a trial

(ASPIRE) in 2015 measured the effect of Carfilzomib-based therapy on survival in

Relapsed & Refractory Multiple Myeloma (RRMM) patients (Stewart et al., 2015). The

CoMMpass trial, an observational dataset, was also available in which the Carfilzomib

regimen was given to both NDMM and RRMM patients (NIH, 2016). Several analyses

on the CoMMpass dataset to estimate the effect of Carfilzomib-based therapy on

NDMM patients led to different, sometimes opposing, conclusions on the benefit of

the therapy in this subpopulation (Li et al., 2018a; Landgren et al., 2018).

A traditional meta-analysis approach would combine observational estimates under the

assumption that differences arise only due to random variation, and not e.g., differences

in confounding bias (Higgins et al., 2019, Section 10.10.4.1). This is unlikely to be true

in practice. For instance, in Example 4.1, the two studies in question made different

choices in e.g., how to adjust for confounders. In the work presented in this chapter, we

relax the assumption that all observational estimates are valid. Instead, we assume that

at least one observational estimate is valid across all subpopulations. In the context of

Example 4.1, we might assume that at least one of the candidate observational studies

yields consistent and asymptotically normal estimates of the effects in both the NDMM

and RRMM populations. While we cannot verify that any given estimator is valid for

all subpopulations, we can falsify this claim of validity if an estimator is inconsistent

for the causal effects identified by the RCT (e.g., RRMM). Hence, we use the term

validation effects to refer to causal effects in subpopulations that overlap between the

observational and randomized datasets (e.g., RRMM), and use the term extrapolated

effects to refer to those only covered by observational datasets (e.g., NDMM).

We propose a meta-algorithm that combines two key ideas: falsification of estimators,

and pessimistic combination of confidence intervals. We first aim to falsify candidate

estimators using hypothesis testing, rejecting those that fail to replicate the RCT

estimates of validation effects. In Section 4.2.2, we motivate this approach with

examples of observational estimates based on different causal assumptions, showing

that hypothesis tests based on asymptotic normality can be applied even when causal
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assumptions fail to hold. Then, we combine accepted estimators to get confidence

intervals on the extrapolated effects. Since failure to reject does not imply validity,1 we

return an interval that contains every confidence interval of the accepted estimators.

We demonstrate theoretically that if at least one candidate estimator is consistent

for both the validation and extrapolated effects, then the intervals returned by our

algorithm provide valid asymptotic coverage of the true effects.

In scenarios where the covariate distribution differs across datasets, estimators that

“transport” the causal effect should be used Pearl and Bareinboim (2014); Dahabreh

et al. (2019, 2020). Furthermore, in the case of high-dimensional covariates, flexible

machine learning methods are required to estimate nuisance functions, which can

affect the hypothesis tests due to their slower convergence rates. In light of this, we

adapt estimators of the average treatment effect in this setting to provide estimates

of group-wise treatment effects, and show (via the framework of double machine

learning (Chernozhukov et al., 2018; Semenova and Chernozhukov, 2021)) that this

estimator enjoys asymptotic normality under mild conditions on convergence rates of

the nuisance function estimators. Our conclusions are supported by semi-synthetic

experiments, based on the IHDP dataset, as well as real-world experiments, based on

clinical trial and observational data from the Women’s Health Initiative (WHI), that

demonstrate various characteristics of our meta-algorithm.

4.2 Setup and Motivating Examples

4.2.1 Notation and Assumptions

Let 𝑌 ∈ 𝒴 denote an outcome of interest, and 𝐴 ∈ {0, 1} denote a binary treatment.

We use 𝑌𝑎 to denote the potential outcome of an individual under treatment 𝐴 = 𝑎. We

use 𝑋 ∈ 𝒳 to denote all other covariates. To distinguish between different sampling

distributions (i.e., datasets), we use the random variable 𝐷 ∈ {0, . . . 𝐽}, where 𝐽 ≥ 1

1For instance, we could fail to reject due to low power, or because falsification is impossible, due
to differences in causal structure across subpopulations, as discussed in Appendix B.1.
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is the number of observational datasets, and 𝐷 = 0 is reserved for the sampling

distribution of the randomized trial. We let P(𝑌1, 𝑌0, 𝑌, 𝐴,𝑋,𝐷) denote the joint

distribution over all variables, including unobserved potential outcomes. For instance,

P(𝑌1, 𝑌0, 𝑋 | 𝐷 = 0) denotes the distribution of potential outcomes and covariates in

the RCT.

We seek to estimate conditional average treatment effects for a finite set of 𝐼 subgroups

{𝒢𝑖}𝐼𝑖=1. We assume subgroups are defined a-priori by a function 𝐺 : 𝒳 ↦→ {1, . . . , 𝐼},

such that 𝐺 = 𝑖 indicates that 𝑋 ∈ 𝒢𝑖. We use observational data precisely because

not all groups are supported on the RCT dataset. To this end, we use ℐ𝑅 = {𝑖 : P(𝐺 =

𝑖 | 𝐷 = 0) > 0} to denote the set of subgroups supported on the RCT dataset, and we

let ℐ𝑂 denote the complement {1, . . . , 𝐼} ∖ ℐ𝑅. We use |ℐ𝑅| to denote the cardinality

of a set, and assume that every observational dataset has support for all groups.

Assumption 4.1 (Support). We assume that for each 𝑖 ∈ {1, . . . , 𝐼} and 𝑗 ∈ {1, . . . , 𝐽},

P(𝐺 = 𝑖,𝐷 = 𝑗) > 0, i.e., all observational datasets (𝐷 ≥ 1) have support for all

groups.

Definition 4.1 (Validation and Extrapolated Effects). We define the group average

treatment effect (GATE)2 as

𝜏𝑖 :=

⎧⎪⎨⎪⎩E[𝑌1 − 𝑌0 | 𝐺 = 𝑖,𝐷 = 0], if 𝑖 ∈ ℐ𝑅

E[𝑌1 − 𝑌0 | 𝐺 = 𝑖,𝐷 = 1], if 𝑖 ∈ ℐ𝑂
(4.1)

and refer to 𝜏𝑖 for 𝑖 ∈ ℐ𝑅 as a validation effect, and 𝜏𝑖 for 𝑖 ∈ ℐ𝑂 as an extrapolated

effect.

Here, we focus on discrete subgroups, in part to reflect the practical reality of comparing

RCTs to observational studies, where we may have large observational datasets with

rich covariates but only have access to the published results of the RCT, which often

provides estimates (with confidence intervals) for subgroup effects but not the raw

2We use this term in line with the literature (Chernozhukov et al., 2017; Jacob, 2019; Park and
Kang, 2019; Semenova and Chernozhukov, 2021) and to distinguish it from the CATE function.
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data itself (SPRINT Research Group et al., 2015, Figure 4, for example). In Def. 4.1,

we allow for the fact that different datasets may have different distributions of effect

modifiers. To have a well-defined effect of interest, we have chosen the reference dataset

𝐷 = 1 arbitrarily, but in principle we could choose any of the observational datasets.

We discuss further nuances of this definition under Assumption 4.3. By Def. 4.1, we

often write these effects as a vector 𝜏 ∈ R𝐼 . We use 𝜏(𝑘) ∈ R𝐼 to denote an estimator,

where 𝑘 ∈ {0, . . . ,𝐾}, with 𝜏(0) reserved to denote the estimator derived from the

RCT data. The remainder are observational estimators.3 In general, we use “hat”

notation to refer to estimators, and refer to their population quantities without a hat.

We use 𝑁𝑘 to denote the number of samples used by each estimator. Throughout, we

will assume that the RCT estimator is consistent.

Assumption 4.2. The RCT estimator 𝜏(0) is a consistent estimator of the (supported)

dimensions of 𝜏 , such that for each 𝑖 ∈ ℐ𝑅, 𝜏 𝑖(0) is consistent for 𝜏𝑖.

Below, our central assumption states that at least one observational estimator also

enjoys consistency. We discuss examples of specific observational estimators in Sec-

tion 4.2.2.

Assumption 4.3. There exists at least one observational estimator 𝜏(𝑘) ∈ R𝐼 , 𝑘 ≥ 1

that is a consistent estimator of 𝜏 ∈ R𝐼 , such that for each 𝑖 ∈ {1, . . . , 𝐼}, 𝜏 𝑖(𝑘) is

consistent for 𝜏𝑖.

Remark 1. Assumption 4.3 is our primary non-trivial assumption, and in Appendix B.2,

we give one example of causal assumptions (for a given observational study) under

which the entire GATE vector 𝜏 is identifiable from observational data, and give

an estimator of the resulting observational quantity which is asymptotically normal

(Pearl and Bareinboim, 2011, 2014; Pearl, 2015; Dahabreh et al., 2020; Degtiar and

Rose, 2021). In order to compare observational estimates with experimental ones,

Assumption 4.3 requires not only that the observational data is free of confounding,

but also that the causal effect can be transported to the RCT population. This

3We define 𝜏(0) as a vector in R𝐼 for simplicity of notation, allowing the entries 𝜏 𝑖(0), 𝑖 ∈ ℐ𝑂 to
be arbitrary.
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can be done so long as relevant effect modifiers are observed in both the RCT and

observational study, but the latter requirement is satisfied automatically (without

requiring RCT data) if e.g., treatment effects are constant within each subgroup 𝐺, or

if the distribution of effect modifiers is the same between the RCT and observational

study, in which case E[𝑌1 − 𝑌0 | 𝐷,𝐺] = E[𝑌1 − 𝑌0 | 𝐺]. This represents one

(conservative) failure mode of our approach, in which we may reject an observational

estimator due to failures in transportability, even if it yields unbiased estimates of the

extrapolated effects.

Assumptions 4.2 and 4.3 imply that there exists an observational estimator 𝜏(𝑘) such

that both 𝜏 𝑖(𝑘) and the RCT estimate 𝜏 𝑖(0) are both consistent for the validation

effects 𝜏𝑖, ∀𝑖 ∈ ℐ𝑅. To validate this implication in finite samples, we will construct a

statistical test to compare 𝜏 𝑖(𝑘) and 𝜏 𝑖(0). Our general approach could be modified

to use any valid test, but to facilitate further analysis, as well as explicit construction

of confidence intervals, we additionally assume the following:

Assumption 4.4. All GATE estimators are pointwise4 asymptotically normally dis-

tributed. That is, for all (𝑘, 𝑖) ∈ {1, , ..., 𝐾} × (ℐ𝑅 ∪ ℐ𝑂) and for all (𝑘, 𝑖) ∈ {0} × ℐ𝑅,

√︀
𝑁𝑘(𝜏 𝑖(𝑘)− 𝜏𝑖(𝑘))/�̂�𝑖(𝑘)

d→ 𝒩 (0, 1) (4.2)

Here,
d→ denotes convergence in distribution, and �̂�2

𝑖 (𝑘) is an estimate of the variance

that converges in probability to 𝜎2
𝑖 (𝑘), the asymptotic variance of

√
𝑁𝑘(𝜏 𝑖(𝑘)− 𝜏𝑖(𝑘)).

Assumption 4.4 requires each estimator 𝜏(𝑘) to be consistent and asymptotically

normal for some 𝜏(𝑘), which may not be equal to 𝜏 . This is not a particularly strong

assumption, as we discuss below.

4Here, “pointwise” refers to the fact that each subgroup effect estimate is asymptotically normal.
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4.2.2 Asymptotic Normality of Biased Estimators

In this section, we give two simple examples to illustrate the principle that multiple

estimators 𝜏(𝑘) may be asymptotically normal, even if they are asymptotically biased

(i.e., 𝜏(𝑘) ̸= 𝜏). In both cases, there is a distinction between the statistical assumptions

required to obtain asymptotic normality, and the causal assumptions required for

𝜏(𝑘) to identify the causal effect 𝜏 . For simplicity in both examples, we restrict to

the setting of comparing one-dimensional estimates 𝜏(𝑘) ∈ R, which estimate the

GATE, 𝜏 , in a single group 𝐺 = 1 covered by all datasets. The statistical claims here

also extend to GATE estimation with multiple groups (Semenova and Chernozhukov,

2021).

Example 4.2 (Variation in confounding across datasets). Suppose that there is one

estimator of the GATE per observational dataset, and each estimator seeks to estimate

the population quantity, 𝜏(𝑘) = E[𝑔𝑘(1, 𝑋𝑘)− 𝑔𝑘(0, 𝑋𝑘) | 𝐺 = 1, 𝐷 = 𝑘], where 𝑋𝑘

denotes the controls used in each study, and 𝑔𝑘(𝐴,𝑋𝑘) := E[𝑌 | 𝐴,𝑋𝑘, 𝐷 = 𝑘] and

𝑚𝑘(𝑋𝑘) := P(𝐴 = 1 | 𝑋𝑘, 𝐷 = 𝑘). We assume that there exists some 𝜂 > 0 such

that for all 𝑥, 𝑘, 𝜂 < 𝑚𝑘(𝑥) < 1 − 𝜂. Note that 𝜏(𝑘) is only a statistical quantity:

identifying this with the causal quantity (the GATE) requires additional assumptions

like unconfoundedness, that 𝑌𝑎 ⊥⊥ 𝐴 | 𝑋𝑘 for the given dataset𝐷. This assumption may

hold for some datasets, but not others, particularly if the set of observed confounders

𝑋𝑘 differs across datasets.

Regardless of the interpretation of 𝜏(𝑘), one can construct estimators of it that are

consistent and asymptotically normal using flexible machine learning estimators.5 One

approach, given in Chernozhukov et al. (2018), is to use double machine learning

(DML), which employs cross-fitting to produce estimates 𝜏(𝑘) based on the doubly-

robust score (Robins and Rotnitzky, 1995), while using plug-in estimates 𝑔𝑘, �̂�𝑘

based on machine learning models. This approach achieves asymptotic normality,
√
𝑁𝑘(𝜏(𝑘)− 𝜏(𝑘))/�̂�2(𝑘)

d→ 𝒩 (0, 1), under regularity conditions that allow for flexible

5A rich literature focuses on establishing such results, beyond the approach in this example (Athey
et al., 2016; Farrell, 2018; Wager and Athey, 2018; Oprescu et al., 2019; Athey et al., 2019).
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machine learning estimators that converge at slower than parametric rates, and where

�̂�2(𝑘) converges in probability to the variance of the doubly robust score (See Theorem

5.1 of Chernozhukov et al., 2018, for additional details). These results hold whether or

not 𝜏(𝑘) = 𝜏 , as discussed in Footnote 9 of Chernozhukov et al. (2018). For simplicity,

we have focused on the case where E[𝑌1 − 𝑌0 | 𝐺 = 1] is constant across datasets.

When this does not hold, certain conditions enable valid transportation of treatment

effects across datasets (Degtiar and Rose, 2021) with the use of transported estimators

(Dahabreh et al., 2020) (see Appendix B.2 for details).

Example 4.3 (Selection of Adjustment Strategy). Consider the two causal graphs

given in Figure 4-1, and assume that all variables are binary. Each graph suggests

a different identification strategy for the causal effect, E[𝑌 | 𝑑𝑜(𝐴 = 𝑎), 𝐺 = 1]. In

Figure 4-1a, this is identified by the (observational) quantity E[𝑌 | 𝐴 = 𝑎,𝐺 = 1],

and in Figure 4-1b, by front-door adjustment (Pearl, 1995) as
∑︀

𝑀 𝑃 (𝑀 | 𝑎,𝐺 =

1)
∑︀

𝐴′ P(𝑌 |𝑀,𝐴′, 𝐺 = 1)P(𝐴′ | 𝐺 = 1).

𝐴 𝑀

𝐺

𝑌

(a)

𝐴 𝑀

𝐺

𝑌

(b)

Figure 4-1: (Ex. 4.3) In (a), 𝑀 and 𝑌 are
confounded by unobservables (bi-directional dot-
ted arrow). In (b), 𝐴 and 𝑌 are confounded,
but the causal effect is identified via front-door
adjustment.

These observational quantities will

typically differ: the one that repre-

sents the true interventional effect

depends on which graph reflects the

true causal structure. However, in

the case where all variables are dis-

crete and low-dimensional, we can

still construct asymptotically nor-

mal estimators for both observational

quantities.6 For more complex set-

tings (e.g., requiring regularized ML models for estimating conditional distributions)

asymptotic normality has been established under certain conditions for general graphs

(Bhattacharya et al., 2020; Jung et al., 2021)

6This follows from the use of maximum likelihood (i.e., empirical counts) for estimating each
conditional distribution, and applying the delta method to the front-door estimator.
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Remark 2. In each example, there are multiple estimators available, each asymptotically

normal under basic statistical assumptions, but potentially biased in the sense that

𝜏(𝑘) ̸= 𝜏 . In the first example, this bias occurs if 𝑋 is not sufficient to control for

confounding in all observational datasets. In the second, this bias arises in a given

estimator if the causal graph is incorrectly specified. Assumption 4.3 corresponds to

assuming that both the statistical assumptions and causal assumptions hold for one

of the candidate estimators, e.g., 𝑋 is sufficient to control for confounding in at least

one study (Example 4.2), or that one of the causal graphs is correct (Example 4.3).

4.2.3 Asymptotic Normality of GATE Estimators with Transporta-

tion

Example 4.2 assumes that E[𝑌1 − 𝑌0 | 𝐺 = 𝑖] is constant across datasets. In practice,

it may be necessary to correct for differences (not captured by group indicators)

between the observational and RCT populations. There exist estimators for the ATE

in this setting under mild additional assumptions Dahabreh et al. (2020, 2019). These

extend in a straightforward way to estimators of the GATE, but proving asymptotic

normality is nuanced in high-dimensional settings when using flexible machine learning

methods to estimate nuisance functions. For completeness, inspired by Semenova and

Chernozhukov (2021), we demonstrate that a doubly-robust GATE estimator for this

setting is asymptotically normal under reasonable conditions (Assumption B.3.1 to

B.3.5). Details on the estimator, and the corresponding proof of normality, are given

in Appendix B.3, and may be of independent interest.

4.2.4 Testing for Bias under Asymptotic Normality

Under Assumption 4.4, each observational estimate 𝜏 𝑖(𝑘) can be compared to the

estimate from the randomized trial 𝜏 𝑖(0) for 𝑖 ∈ ℐ𝑅, the groups with common support.

Since the observational and randomized datasets are distinct, we can conclude that

each 𝜏 𝑖(𝑘) is independent of 𝜏 𝑖(0), and use this to test for the hypothesis that 𝜏𝑖(𝑘) = 𝜏𝑖.
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Proposition 4.1. For an observational estimator 𝜏(𝑘), assume Assumptions 4.2 and

4.4 hold. Furthermore, let 𝑁 = 𝑁𝑘 +𝑁0 with fixed proportions, where 𝑁𝑘 = 𝜌𝑁,𝑁0 =

(1− 𝜌)𝑁 for 𝜌 ∈ (0, 1). Define the test statistic

𝑇𝑁(𝑘, 𝑖) :=
𝜏 𝑖(𝑘)− 𝜏 𝑖(0)− 𝜇𝑖(𝑘)

�̂�
(4.3)

where �̂�2 :=
�̂�2
𝑖 (𝑘)

𝑁𝑘
+

�̂�2
𝑖 (0)

𝑁0
is the estimated variance, and 𝜇𝑖(𝑘) := 𝜏𝑖(𝑘)− 𝜏𝑖. This test

statistic converges in distribution to a normal distribution as 𝑁 → ∞, 𝑇𝑁(𝑘, 𝑖)
d→

𝒩 (0, 1).

We present the proof for Proposition 4.1 in Appendix B.4. This asymptotic normality

allows for the construction of simple hypothesis tests. For instance, one can construct

a Wald test for 𝐻0 : 𝜏𝑖(𝑘) = 𝜏𝑖, with asymptotic level 𝛼 by setting 𝜇𝑖(𝑘) = 0 in

Equation (4.3) and rejecting 𝐻0 whenever, |𝑇𝑁 (𝑘, 𝑖)| > 𝑧𝛼/2, where 𝑧𝛼/2 is the 1− 𝛼/2

quantile of the normal CDF. Moreover, the asymptotic power of this test (the

probability of correctly rejecting 𝐻0) is given by

1− Φ

(︂
𝜇𝑖(𝑘)

𝜎𝑘,0

+ 𝑧𝛼/2

)︂
+ Φ

(︂
𝜇𝑖(𝑘)

𝜎𝑘,0

− 𝑧𝛼/2

)︂
(4.4)

where 𝜎2
𝑘,0 :=

𝜎2(𝑘)𝑖
𝑁𝑘

+
𝜎2
𝑖 (0)

𝑁0
(see Theorems 10.4, 10.6 of Wasserman, 2004). Likewise,

Assumption 4.4 implies an asymptotic 1− 𝛼 confidence interval for 𝜏𝑖(𝑘) as

[�̂�𝑖(𝑘)(𝛼), �̂� 𝑖(𝑘)(𝛼)] :=

[︂
𝜏 𝑖(𝑘)−

𝑧𝛼/2 · �̂�𝑖(𝑘)√
𝑁𝑘

, 𝜏 𝑖(𝑘) +
𝑧𝛼/2 · �̂�𝑖(𝑘)√

𝑁𝑘

]︂
(4.5)

4.3 Meta-Algorithm for Conservative Extrapolation

In this section, we more formally introduce our algorithm (Algorithm 1). There are

two primary steps: falsification of estimators, and combination of confidence intervals.

First, we attempt to falsify candidate estimators via hypothesis testing, rejecting
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Algorithm 1 Extrapolated Pessimistic Confidence Sets

Input: Desired coverage 1− 𝛼. For each 𝑖 ∈ ℐ𝑅, RCT estimate 𝜏 𝑖(0) and variance
�̂�2
𝑖 (0). For each 𝑖 ∈ ℐ𝑅 ∪ ℐ𝑂, 𝐾 candidate estimators 𝜏 𝑖(𝑘) and variances �̂�2

𝑖 (𝑘).
Sample sizes 𝑁0, . . . , 𝑁𝐾 .
Initialize: Empty candidate set 𝒞 ← ∅
for 𝑘 = 1 to 𝐾 do
Compute 𝑇𝑁(𝑘, 𝑖),∀𝑖 ∈ ℐ𝑅, with 𝜇𝑖(𝑘) = 0 (Eq. 4.3)

if ∀𝑖 ∈ ℐ𝑅,
⃒⃒⃒
𝑇𝑁(𝑘, 𝑖)

⃒⃒⃒
≤ 𝑧𝛼/4|ℐ𝑅|, then 𝒞 ← 𝒞 ∪ {𝑘}

end for
for 𝑖 ∈ ℐ𝑂 do
�̂�𝑖 ← min𝑘∈𝒞 �̂�𝑖(𝑘)(𝛼/2) and �̂� 𝑖 ← max𝑘∈𝒞 �̂� 𝑖(𝑘)(𝛼/2) (Eq. 4.5)

end for
Return: �̂�𝑖, �̂� 𝑖 for each 𝑖 ∈ ℐ𝑂.

estimator 𝑘 whenever we are able to reject the null hypothesis 𝐻0 : 𝜏𝑖(𝑘) = 𝜏𝑖, ∀𝑖 ∈ ℐ𝑅.

We use Bonferroni correction to control the false positive rate of the test. For the

combination of confidence intervals, while we are unlikely to reject the “correct”

estimator if one exists (Assumption 4.3), we may be unable to reject all “incorrect”

(i.e., biased) estimators. This motivates the combination of confidence intervals (for

the extrapolated effects) of the accepted estimators by taking the maximum and

minimum bounds over all such intervals. Our main result characterizes the properties

of our procedure, with proof in Appendix B.4.

Theorem 4.1 (Properties of Algorithm 1). Under Assumptions 4.1 and 4.2, the output

of Algorithm 1 has the following asymptotic properties as 𝑁 →∞, where 𝑁 denotes

the total sample size, and the samples used for all estimators are of the same order

𝑁𝑘 = 𝜌𝑘𝑁0, ∀𝑘 ≥ 1, for some 𝜌𝑘 > 0.

1. Under Assumptions 4.3 and 4.4, for each 𝑖 ∈ ℐ𝑂,

lim
𝑁→∞

P(𝜏𝑖 ∈ [�̂�𝑖, �̂� 𝑖]) ≥ 1− 𝛼 (4.6)

2. Under Assumption 4.4, for each estimator where 𝜏𝑖(𝑘) ̸= 𝜏𝑖 for some 𝑖 ∈ ℐ𝑅,

lim
𝑁→∞

P(𝑘 ∈ 𝒞) = 0 (4.7)

199



The first point says that for each extrapolated effect 𝜏𝑖, the coverage of the final

confidence interval [�̂�𝑖, �̂� 𝑖] is at least 1−𝛼 in the limit. It follows from Assumption 4.3

and 4.4 that at least one estimator provides intervals [�̂�𝑖(𝑘)(𝛼/2), �̂� 𝑖(𝑘)(𝛼/2)] that

achieve asymptotic coverage of 1−𝛼/2. The result follows from our choice of threshold

for the significance test as well as application of union bounds. The second point says

that we will reject estimators that are not consistent for the validation effects, in the

limit. Assumption 4.4 ensures that Proposition 4.1 holds for all estimators, so that

this rejection is a consequence of the asymptotic power in Equation (4.4), going to 1

for a fixed bias as 𝑁 →∞.

Remark 3. Equations (4.4) and (4.5) are useful for building further intuition. All of

the candidate confidence intervals shrink at a rate of 𝑂(1/
√
𝑁) as the overall sample

size increases. For sufficiently large 𝑁 , the width of our generated intervals will depend

largely on our power to reject biased estimators, which will be higher for observational

estimates with larger biases for validation effects.

4.4 Semi-Synthetic Experiments

4.4.1 Setup of Simulation

We generate semi-synthetic RCTs and observational datasets with covariates from

the Infant Health and Development Program (IHDP), a randomized experiment on

premature infants assessing the effect of home visits from a trained provider on the

future cognitive performance (Brooks-Gunn et al., 1992). The outcomes are simulated.

Our data generation is based on the partial IHDP dataset used in (Hill, 2011), which

includes 𝑛0 = 985 observation, 28 covariates, and a binary treatment variable. We

construct a scenario where there are four subgroups, defined by the infant’s birth weight

and maternal marital status: (high [≥ 2000g], married), (low [< 2000g], married),

(high, single) and (low, single), which we shorthand as HM, LM, HS and LS. We

include all subgroups in the observational studies, but exclude the latter two subgroups
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for the simulated RCT (i.e. only infants with married mothers are in the RCT).

For each simulated dataset, we generate 1 RCT and 𝐾 observational studies. For

the observational studies, we resample the rows of the IHDP dataset to the desired

sample size 𝑛 = 𝑟 ·𝑛0. We performed weighted sampling to induce a different covariate

distribution for observational studies, such that male infants, infants whose mothers

smoked, and infants whose mothers worked during pregnancy are less prevalent.

Then, we introduce confounding in the observational data, generating 𝑚𝑐 continuous

confounders and 𝑚𝑏 binary confounders. Finally, we simulate outcomes in each dataset,

modifying the response surface given in Hill (2011). In our experiments, we may

choose to conceal some confounders in each observational study to mimic unobserved

confounding, denoting the number of concealed variables across the 𝐾 studies as cz =

(𝑐𝑧1, 𝑐𝑧2, ..., 𝑐𝑧𝐾). For further details on confounder generation, outcome simulation,

and confounder concealment, see Appendix B.6. Data generation parameters include

𝐾, 𝑟, 𝑚𝑐, 𝑚𝑏, cz, and the significance level 𝛼. By default, we set 𝐾 = 5, 𝑟 = 10,

𝑚𝑐 = 4, 𝑚𝑏 = 3, cz = (0, 0, 2, 4, 6), and 𝛼 = 0.05. The full hyperparameter search

is provided in Appendix B.6, and details of hyperparameter tuning can be found in

Appendix B.3.

4.4.2 Implementation and Evaluation of Meta-Algorithm

To implement Algorithm 1, we first obtain GATE estimates for the four subgroups

and their estimated variances in each observational study, combining techniques from

the DML and trasportability literature (Semenova and Chernozhukov, 2021; Dahabreh

et al., 2020). Estimation details are shown in Appendices B.2 and B.3. For the

RCT, we stratify the data into the subgroups HM, LM and estimate the GATEs as

the difference of mean outcomes between the treated and untreated. The 𝑧 tests

in Algorithm 1 are applied to both GATE estimates in the HM and LM subgroups

(|ℐ𝑅| = 2), and the significance level of the tests is set at 𝛼/4.

We evaluate performance using two main metrics: (1) the coverage probability of the
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output confidence intervals (ideally at least 1−𝛼), and (2) the width of the confidence

intervals (narrower is better). In addition to assessing the intervals produced by

Algorithm 1, which we call Extrapolated Pessimistic Confidence Sets (ExPCS), we

will evaluate intervals produced by a variant of our algorithm, called Extrapolated

Optimistic Confidence Sets (ExOCS). In ExOCS, after falsifying estimators, we com-

bine confidence intervals using a random-effects meta-analysis on the non-falsified

observational studies. We compare ExPCS and ExOCS against two baselines. Meta-

Analysis is a random-effects meta-analysis on all observational studies, as described in

Section 4.6, with heterogeneity variance estimated via the DerSimonian-Laird moment

method (DerSimonian and Laird, 1986). This baseline is the current standard for

aggregating observational study results. The second baseline, Simple Union, uses the

maximum upper bound and minimum lower bound of the 1− 𝛼 confidence intervals

across all observational studies, with no falsification procedure.7

4.4.3 Results

We perform three semi-synthetic experiments to assess the performance of our proposed

meta-algorithm under different scenarios. The first experiment applies our algorithm

under the default settings given in Section 4.4.1. In the second experiment, we vary the

sample size ratio between the observational studies and the original RCT, 𝑟, from 1 to

10. In the third experiment, we vary the proportion of biased observational studies by

setting cz to be (0, 0, 0, 0, 0), (0, 0, 0, 0, 3), (0, 0, 0, 3, 3) or (0, 3, 3, 3, 3), corresponding

to 0, 1, 2, 4 studies being biased out of a total of 5 observational studies. Results for

the latter two experiments are shown over 100 simulations of the datasets. Results

for all experiments are shown in Figures 4-2, 4-3, and Figure B-2 in Appendix B.7,

respectively. We observe the following:

Meta-algorithm produces confidence intervals that cover the true GATE with nominal

probability : We demonstrate in Figure 4-2 the application of our meta-algorithm

7Note that Simple Union combines 1−𝛼 confidence intervals, while our approach combines 1−𝛼/2
confidence intervals to account for the probability of rejecting the “correct” estimator, if one exists.
As a result, Simple Union intervals do not always strictly cover the intervals produced by ExPCS.
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(ExPCS ), a variant of it (ExOCS ), and two other baselines on one dataset. Our

goal is to produce narrow confidence intervals that still cover the true GATEs in the

extrapolated subgroups. The confidence intervals of ExPCS cover the true GATEs in

the extrapolated subgroups with reasonable widths. In contrast, intervals produced by

Meta-Analysis fail to cover the true GATE in both extrapolated subgroups due to the

false assumption of unbiasedness across all studies. The ExOCS approach produces

narrow intervals for the extrapolated effects, though it barely covers the true effect in

the HS subgroup. This hints at the need for a conservative combination of non-falsified

studies. However, an overly conservative approach (e.g. Simple Union) produces wide

intervals that may be of little use for meaningful inference.

Although Meta-Analysis produces confidence intervals with inadequate coverage, its

intervals for the married subgroups still have considerable overlap with the intervals

produced by the RCT. This suggests that testing the meta-analyzed GATE estimates

against the RCT GATE estimates may not be enough to demonstrate their validity.

Compared to our ExPCS intervals, the lower bounds of the Simple Union intervals are

higher in several subgroups, since we use a higher confidence level for the candidate

intervals corresponding to each study to account for probable error in study falsification.

An analysis of increasing observational study size: In Figure 4-3, we find that the

coverage of the Meta-Analysis intervals is quite low across all sample sizes and

particularly decreases at higher sample sizes. This result is intuitive, as three out of

five studies are biased, meaning that meta-analysis will converge to a biased estimate

as the amount of data increases. One could attempt to fix this issue through ExOCS,

which does meta-analysis after falsification. However, ExOCS has poor coverage

when the sample size of the observational studies is small, since the falsification tests

are underpowered (evidenced by the high probability of selecting biased studies in

Appendix B.7, Table B.1). Both ExPCS and the Simple Union intervals have adequate

coverage across all sample sizes. However, the widths of the intervals reported at the

bottom of Figure 4-3 show that ExPCS intervals are narrower when there is adequate

power, i.e. at higher sample sizes. Ultimately, ExPCS will tend to provide intervals
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Figure 4-2: The confidence intervals for group average treatment effects (GATE)
within the four subgroups output by our algorithm (ExPCS), our algorithm variant
(ExOCS), random-effects meta-analysis on all observational studies (Meta-Analysis),
simple union bound on all observational studies (Simple), and RCT, for one dataset
generated using the default parameter settings laid out in Section 4.4.1. LM, HM, LS,
HS represent four subgroups defined in Section 4.4.1

that cover the true effect regardless of sample size, and in the case we have sufficient

power, these intervals will both have good coverage and narrower width, allowing for

more meaningful inference.
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Group Estimator 1 3 5 10

LS
ExPCS 21.00 9.51 5.53 3.58

Simple 21.00 10.20 6.95 5.69

HS
ExPCS 25.00 8.29 5.36 4.34

Simple 26.00 9.15 6.90 6.33

Figure 4-3: Coverage probabilities of confidence intervals shown as a function of the
size of the observational studies relative to the RCT. Dotted red lines stand for 95%
coverage. Vertical bars are the 95% confidence intervals of the coverage probabilities.
LS / HS stand for groups with low / high birth weight and single mother. Between
ExPCS and Simple which have adequate coverage, ExPCS generally has narrower
intervals.

4.5 Women’s Health Initiative (WHI) Experiments

In order to assess our approach in a real-world setting, we use clinical trial and

observational data available from the WHI. Each subgroup is supported in both RCT

and observational data, which proves useful for evaluation. At a high level, we “hide”

some number of subgroups from the RCT, estimate a confidence interval of the effect

estimate using our algorithm on the remaining data, and compare the result to the

hidden RCT estimate. We do this over a large set of possible “held-out” subgroups,

yielding >2000 different scenarios on which to test our approach. Because the original

observational datasets replicate the RCT results fairly well using standard methods, we

create additional “biased” datasets by sub-selecting the original observational dataset

in a way that induces selection bias. We evaluate each method, for each held-out

subgroup, according to the length of the intervals as well as coverage of the RCT point

estimates. Below, we describe the specifics of the data, the experimental setup, and

the main results of the analysis. For additional details on data preprocessing, setup,

and evaluation, see Appendix B.5.
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4.5.1 Setup

The Postmenopausal Hormone Therapy (PHT) trial, i.e. the RCT used in this

analysis, was run on postmenopausal women aged 50-79 years who had an intact

uterus. It studied the effect of hormone combination therapy on several types of

cancers, cardiovascular events, and fractures. The observational study (OS) was run

in parallel, had a similar follow-up time to the RCT, and tracked similar outcomes.

In our analysis, we use a composite outcome, where 𝑌 = 1 if any of the following

events are observed to occur in the first 7 years of follow-up, and 𝑌 = 0 otherwise:

coronary heart disease, stroke, pulmonary embolism, endometrial cancer, colorectal

cancer, hip fracture, and death due to other causes. This represents a binarization of

the “global index” time-to-event outcome from the original study, where 𝑌 = 0 could

also occur due to censoring. We establish treatment and control groups in the OS

based on explicit confirmation or denial of usage of both estrogen and progesterone in

the first three years. We use only covariates measured in both the RCT and OS to

simplify analysis.

4.5.2 Evaluation

Our empirical evaluation consists of several steps. In the first step, we replicate the

principal results from the PHT trial, given in Table 2 of (Rossouw et al., 2002), by

fitting a doubly robust estimator (of the style given in Appendix B.3) on the WHI

OS data. Then, while treating the WHI OS dataset as the “unbiased” observational

dataset, we simulate additional “biased” observational datasets by inducing selection

bias into the WHI OS. The exact mechanism of selection bias and its clinical intuition

is given in Appendix B.5. Importantly, this is the only part of the evaluation that

involves any simulation.

The second step is to construct a large suite of tasks on which to evaluate our

method, by considering different sets of validation-extrapolation subgroups. To

construct the subgroups, we consider all pairs of a selected set of binary covariates (see
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Coverage Length OS %

Simple 0.39 0.416 –
Meta-Analysis 0.03 0.260 –
ExOCS 0.28 0.058 –
ExPCS (ours) 0.45 0.081 0.99

Oracle 0.44 0.068 –

Table 4.1: Coverage, length, and unbiased OS % of ExPCS and baselines. ExPCS
achieves comparable coverage to the oracle method with highly efficient intervals.
Additionally, we do not reject the unbiased OS in 99% of the tasks.

Appendix B.5.6), where each pair defines four subgroups. For example, one covariate

pair is (“current smoker”, “currently drinks alcohol”). We treat two of the subgroups

as validation subgroups and two as extrapolated subgroups. For the latter groups, we

apply our algorithm without access to the RCT data, and only use the RCT data for

final evaluation. The total number of covariate pairs is 592, leading to 1184 distinct

“tasks” (i.e., extrapolated groups). For each task, we evaluate ExPCS (our method),

ExOCS, Simple, and Meta-Analysis (described in Section 4.4.2). Additionally, we

evaluate an “oracle”method, which is identical to ExPCS, except that it always selects

only the original observational study (i.e. the base WHI OS to which we have not added

any selection bias). For each method, we compute the following metrics, averaged

across all tasks – Length: length of the confidence interval, Coverage: percentage of

tasks where the interval covers the RCT point estimate. In addition, we report the

Unbiased OS Percentage: the percentage of tasks where the ExPCS approach retains

the unbiased study after the falsification step.

4.5.3 Results

Table 4.1 reports the metrics above, averaged across all extrapolated subgroups.

Compared to the “simple” baseline, our approach has better coverage with much shorter

confidence intervals. Our falsification procedure retains the unbiased observational

study 99% of the time, yielding near-oracle coverage rates, but produces substantially
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shorter intervals than the “simple” baseline. Recall that the simple baseline takes a

union over all 1− 𝛼 intervals estimated from each observational dataset, while ExPCS

takes a union of a smaller number of slightly wider (1− 𝛼/2) confidence intervals.

Compared to the Meta-Analysis and ExOCS baselines, we achieve comparable (or

much better) length with substantially better coverage. In particular, compared to

meta-analysis, we achieve tighter intervals and also cover the RCT estimate with

higher frequency. This result is intuitive, since one will get a biased estimate if biased

observational studies are included in the meta-analysis. Additionally, conservatively

combining the non-falsified estimates (as opposed to ExOCS, which does a meta-

analysis on the non-falsified estimates) is important to achieve good coverage (0.45 vs

0.28).

We get comparable coverage and interval lengths to the oracle method. Our coverage

rate is nearly identical (0.45) to that of the oracle method (0.44), with intervals that

are marginally wider (0.081 vs. 0.068). Our slightly improved coverage is possible

due to the wider intervals. Note that our measure of “coverage” may be pessimistic,

because we track coverage of the RCT point estimate, as opposed to the true causal

effect (which is unknown), and the confidence intervals are designed to cover the latter.

Indeed, we report the oracle method precisely as a means of providing a more suitable

comparison. Overall, our real-world results suggest that our method of falsification

followed by a conservative combination of intervals may be useful for biostatisticians

and clinicians when doing meta-analyses.

4.6 Related Work

Meta-analysis for combining observational estimates Among the quantitative ap-

proaches for meta-analysis to account for potential bias, our Meta-Analysis baseline is

standard for meta-analysis of observational data (Higgins et al., 2019) to account for

heterogeneity. Allowing for heterogeneity of treatment effects among studies produces

wider confidence intervals and thus more conservative inference. If additional study-
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level covariates are available (e.g. study designs, drop-out rate), several approaches

aim to adjust for potential bias, either by modeling the bias magnitude (Eddy et al.,

1990; Wolpert and Mengersen, 2004; Anglemyer et al., 2014; Greenland, 2005), down-

weighting studies with higher risk of bias (Ibrahim and Chen, 2000; Neuenschwander

et al., 2009), or using Bayesian hierarchical regression to account for difference between

subgroups of studies (Prevost et al., 2000; Welton et al., 2009). Our work differs

from these approaches, in that (1) we use information from outside the population of

interest to assess bias, and (2) we do not place any assumptions on the patterns of

bias across studies.

Partial identification and sensitivity analysis These methods seek to place bounds

on causal effects when they cannot be point-identified. Our method can be seen as

an alternative way of doing so, with a fundamentally different type of assumption.

Methods for partial identification rely on having discrete variables and a known causal

graph (typically including unobserved confounders) (Duarte et al., 2021, Section 9).

Methods for sensitivity analysis, on the other hand, translate assumptions about

the strength and nature of unobserved confounding into bounds on causal effects

(Rosenbaum and Rubin, 1983a; Rosenbaum et al., 2010; Yadlowsky et al., 2018). In

contrast, we do not make any such assumptions, e.g., we allow for continuous variables,

and when some candidate estimators are biased due to unmeasured confounding, we

do not place any limit a-priori on the bias. An extended related work is given in

Appendix B.8.

4.7 Discussion and Limitations

We have presented a meta-algorithm that constructs conservative confidence intervals

for group average treatment effects of subgroups that are not represented in RCTs,

but are represented in observational studies. Under the assumption that there exists

at least one candidate estimator that is asymptotically normal and consistent for

both the validation and extrapolated effects, these intervals will achieve the correct
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asymptotic coverage of the true effect. However, our method is not without limitations.

Most notably, we may fail to reject the null hypothesis due to low power, e.g., when an

observational estimate 𝜏(𝑘) has high variance. In practice, we expect that our approach

will be most useful when the observational studies in question have large sample sizes,

leading to higher-precision estimates of potential bias, and smaller confidence intervals

on the extrapolated effects. Our hope is that methods such as ours will lead to

higher confidence in observational estimates when RCT data is available to falsify

observational studies that do not replicate known causal relationships. Finally, great

care should be taken to appropriately validate and soundly interpret the results of

our method in practice, especially with more sensitive subgroups (e.g. with respect to

race or gender).
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Part II

Robust prediction via causal knowledge
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Chapter 5

Regularizing towards Causal Invariance:

Linear Models with Proxies

This chapter (and accompanying appendix) was previously published as (Oberst et al.,

2021a) at ICML 2021.

5.1 Introduction

Ideally, predictive models would generalize beyond the distribution on which they

are trained, e.g., across geographic regions, across time, or across individual users.

However, models often learn to rely on signals in the training distribution that are not

stable across domains, causing a drop-off in predictive performance. This problem is

broadly known as dataset shift (Quiñonero-Candela et al., 2009).

Tackling this problem requires a formalization of how dataset shift arises, and how

that shift impacts the conditional distribution of our target 𝑌 given features 𝑋. One

way to formalize this shift is in terms of an underlying causal graph (Pearl, 2009),

where changes between distributions are seen as arising from causal interventions on

variables.

Conceptual example: In the causal graph given in Figure 5-1, the variable 𝐴 serves as
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𝐴

𝑌𝑋

𝛽𝑥 𝛽𝑦

𝛼

Figure 5-1: Conceptual Example: 𝐴 represents an (unobserved) socioeconomic variable,
𝑋 represents current health status, and 𝑌 represents a long-term health outcome. All
relationships are assumed to be linear, and coefficients are given. We consider a
broader class of graphs in this work, see Figure 5-2.

a confounder. In a medical setting, 𝐴 could represent smoking habits or socioeconomic

status, which have a causal effect on current health status (𝑋) as well as longer-term

outcomes (𝑌 ). Importantly, 𝐴 may not be recorded in our training data, and the

distribution of 𝐴 could vary across geography and time.

In the context of this causal graph, interventions which change the distribution of

𝐴 will also alter the conditional mean E(𝑌 | 𝑋). Under the linear relationships in

Figure 5-1, the optimal least-squares predictor 𝑌 = 𝛾*𝑋 under the test distribution

depends on the test-time variance in 𝐴, in that

𝛾* =

⎧⎪⎨⎪⎩𝛼, if after intervention 𝐴 = 0

𝛼 + 𝛽𝑌

𝛽𝑋
, if after intervention Var(𝐴)→∞.

The first predictor encodes the direct causal effect of 𝑋 on 𝑌 , but is only optimal in

the setting where the correlations induced by 𝐴 are removed by fixing it to a constant

value of zero (the same holds when including intercepts and allowing for non-zero

means). The second predictor, on the other hand, renders the distribution of the

residual 𝑌 − 𝑌 independent of 𝐴, and is therefore robust to arbitrary interventions

upon 𝐴. However, this is only optimal under arbitrarily strong interventions on 𝐴.

Balancing performance and invariance: Instead of seeking an invariant predictor that

is robust to arbitrary interventions on 𝐴 (like the second predictor above), we instead

seek to minimize a worst-case loss under bounded interventions of a given strength.

We contrast this with work that seeks to discover causal relationships as a route to

invariance (Rojas-Carulla et al., 2018; Magliacane et al., 2018), optimize for invariance
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directly across environments (Arjovsky et al., 2019), or use known causal structure to

select predictors with invariant performance (Subbaswamy et al., 2019).

Our proposed objective takes the form of a standard loss, plus a regularization term that

encourages invariance. This builds upon Rothenhäusler et al. (2021), who introduce

a similar objective, and prove that their objective optimizes a worst-case loss over

bounded interventions on 𝐴, under a large class of linear structural causal models.

In contrast to Rothenhäusler et al. (2021), we do not assume that 𝐴 is observed.

Instead we assume that, during training, we have access to noisy proxies of 𝐴. For

most of this chapter, we assume that neither 𝐴 nor proxies are available during testing.

With this in mind, our contributions are as follows

• Distributional robustness to bounded shifts: In Section 5.3, we show that a

single proxy can be used to construct estimators with distributional robustness

guarantees under bounded interventions on 𝐴. However, these estimators are

robust to a strictly smaller set of interventions, compared to when 𝐴 is used

directly, and the size of this set depends on the (unidentifiable) noise in the

proxy. When two proxies are available, we propose a modified estimator that

can be used to recover the same guarantees as when 𝐴 is observed.

• Targeted shifts : In Section 5.4, we show how to target our loss to interventions

on 𝐴 contained in a specified robustness set. We show that this formulation

includes Anchor Regression as a special case, but also allows for sets that are

not centered around the mean of 𝐴. In this setting we give an estimator, using

two proxies, that identifies the target loss.

In Section 5.5, we evaluate our theoretical findings on synthetic experiments, and in

Section 5.6 we demonstrate our method on a real-world dataset consisting of hourly

pollution readings across five major cities in China.
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5.2 Preliminaries

5.2.1 Notation

We use upper case letters 𝑋 to denote (possibly vector-valued) random variables, and

lower-case letters 𝑥 to denote values in the range of those random variables. Vectors are

assumed to be column vectors, so that 𝑋 ∈ R𝑑𝑋 indicates that 𝑋 = (𝑋1, . . . , 𝑋𝑑𝑋 )
⊤, a

column vector of 𝑑𝑋 random variables. We use Σ𝑋 ∈ R𝑑𝑋×𝑑𝑋 to denote the covariance

matrix of a variable 𝑋. We use bold upper-case letters X to denote a data matrix

in R𝑛×𝑑𝑋 , consisting of 𝑛 i.i.d. observations of 𝑋, and 1 {·} as an indicator random

variable. When dealing with matrices 𝐶,𝐷, we use 𝐶 ≺ 𝐷 and 𝐶 ⪯ 𝐷 to indicate the

positive definite and positive semi-definite partial order, respectively. That is, 𝐶 ≺ 𝐷

if 𝐷−𝐶 is positive definite (PD), and 𝐶 ⪯ 𝐷 if 𝐷−𝐶 is positive semi-definite (PSD).

We use Id to denote the identity matrix, whose dimension is given by context. All

proofs are provided in the supplementary material.

5.2.2 Linear structural causal model

We assume the general class of causal graphs represented in Figure 5-2, where 𝑋 ∈ R𝑑𝑋

denotes observed covariates that can be used in prediction, 𝑌 ∈ R𝑑𝑌 is the target we

seek to predict, 𝐻 ∈ R𝑑𝐻 are unobserved variables, and 𝐴 ∈ R𝑑𝐴 represents anchor

variables, which are assumed to have no causal parents in the graph. We assume the

linear structural causal model (SCM) given in Assumption 5.1.

Assumption 5.1 (Linear SCM). We assume the SCM

⎛⎜⎜⎜⎝
𝑋

𝑌

𝐻

⎞⎟⎟⎟⎠ := 𝐵

⎛⎜⎜⎜⎝
𝑋

𝑌

𝐻

⎞⎟⎟⎟⎠+𝑀𝐴𝐴+ 𝜖, (5.1)

where 𝐴, 𝜖 have zero mean, bounded covariance, and are independently distributed.

We assume that E[𝐴𝐴⊤] and Id−𝐵 are invertible, where Id is the identity matrix.
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𝐻
𝐴

𝑌𝑋𝑊𝑍

Figure 5-2: In contrast to Rothenhäusler et al. (2021), we assume that anchor variables
(denoted 𝐴) are unobserved, but that we have access to either one or two proxies 𝑊,𝑍.
Observed variables are shown in dark grey and unobserved variables in light grey.
We do not assume knowledge of the causal structure between 𝐴,𝑋,𝐻, 𝑌 (except that
𝐴 has no causal parents). The relationship between 𝑋,𝐻, 𝑌 could be cyclic, but all
relationships are linear.

See Figure 5-2 for a graphical representation.

Note that we do not assume here (or anywhere in this chapter) that either 𝐴 or 𝜖

is Gaussian. The invertibility of Id−𝐵 is satisfied if the causal graph is a directed

acyclic graph. The matrices 𝐵,𝑀𝐴 encode the linear causal relationships. For instance,

Figure 5-1 can be represented in this form by 𝐵 =

⎡⎣0 0

𝛼 0

⎤⎦, 𝑀 =

⎡⎣𝛽𝑋

𝛽𝑌

⎤⎦. In general,

𝜖 ∈ R𝐷, 𝐵 ∈ R𝐷×𝐷, and 𝑀 ∈ R𝐷×𝑑𝐴 , where 𝐷 := 𝑑𝑋 + 𝑑𝑌 + 𝑑𝐻 . We assume that

𝑑𝑌 = 1 for simplicity.

5.2.3 Distributional robustness of anchor regression

Our goal is to learn a predictor 𝑓 *(𝑋) of 𝑌 that minimizes a worst-case risk of the

following form

𝑓 * = argmin
𝑓∈ℱ

sup
P∈𝒫

EP[ℓ(𝑌, 𝑓(𝑋))], (5.2)

where ℱ denotes a hypothesis class of possible predictors, 𝒫 denotes a set of possible

distributions, and ℓ represents our loss function. We take the class 𝒫 to consist of

distributions that arise as the result of causal interventions on 𝐴, and seek to learn a

linear predictor to minimize mean-squared error.

We use P to refer to the observational distribution, and P𝑑𝑜(𝐴:=𝜈) to refer to the

distribution under interventions on 𝐴, where the variable 𝐴 is replaced by the random
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variable 𝜈, and 𝜈 is assumed to be independent of the noise vector 𝜖. We often write

𝑅(𝛾) := 𝑌 − 𝛾⊤𝑋

as a random variable that represents the residual of a predictor 𝛾 ∈ R𝑑𝑋 . Importantly,

Assumption 5.1 implies that for any 𝛾, E[𝑅(𝛾) | 𝐴] can be written as a linear function

in 𝐴.

In this setting, Rothenhäusler et al. (2021) propose the following objective, defined

here with respect to the observational distribution P (rather than a finite sample)

Definition 5.1 (Anchor Regression).

ℓ𝐴𝑅(𝐴; 𝛾, 𝜆) := ℓ𝐿𝑆(𝑋, 𝑌 ; 𝛾) + 𝜆ℓ𝑃𝐿𝑆(𝑋, 𝑌,𝐴; 𝛾), (5.3)

where 𝜆 ≥ −1 is a hyperparameter and

ℓ𝐿𝑆(𝑋, 𝑌 ; 𝛾) := E
[︀
𝑅(𝛾)2

]︀
(5.4)

ℓ𝑃𝐿𝑆(𝑋, 𝑌,𝐴; 𝛾) := E
[︀
(E [𝑅(𝛾) | 𝐴])2

]︀
. (5.5)

The first term ℓ𝐿𝑆 encodes the least-squares objective, while the second term ℓ𝑃𝐿𝑆

encodes the residual error which can be predicted from 𝐴, which we refer to as the

projected least-squares error. For 𝜆 > 0, the second term adds an additional penalty

(beyond that of ordinary least squares) when the bias varies across values of 𝐴. The

second term (5.5) can also be written in the linear setting of Assumption 5.1 as

ℓ𝑃𝐿𝑆(𝐴; 𝛾) = E[𝑅(𝛾)𝐴⊤]E[𝐴𝐴⊤]
−1E[𝐴𝑅(𝛾)⊤], (5.6)

where we drop the dependence on𝑋, 𝑌 for notational simplicity. Under Assumption 5.1,

Equation (5.3) corresponds to a worst-case loss under distributional shift caused by
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bounded intervention on 𝐴 (Rothenhäusler et al., 2021, Theorem 1)

ℓ𝐴𝑅(𝐴; 𝛾, 𝜆) = sup
𝜈∈𝐶𝐴(𝜆)

E𝑑𝑜(𝐴:=𝜈)[(𝑌 − 𝛾⊤𝑋)
2
], (5.7)

where the robustness set is given by

𝐶𝐴(𝜆) := {𝜈 : E[𝜈𝜈⊤] ⪯ (1 + 𝜆)E[𝐴𝐴⊤]}. (5.8)

Since minimizing ℓ𝐴𝑅 is equivalent to ordinary least squares (OLS) regression when

𝜆 = 0, this also provides a natural robustness guarantee for the OLS estimator, where

𝐶𝑂𝐿𝑆 := {𝜈 : E[𝜈𝜈⊤] ⪯ E[𝐴𝐴⊤]}. In an identifiable instrumental variable setting,

the minimizer converges against the causal parameter for 𝜆 → ∞ (e.g. Jakobsen

and Peters, 2020, eq. (71)); the ℓ𝑃𝐿𝑆 term has therefore been referred to as ‘causal

regularization’ (e.g. Bühlmann and Ćevid, 2020), and has also been denoted by ℓ𝐼𝑉

(Rothenhäusler et al., 2021), as Cov(𝐴,𝑅(𝛾)) = 0 if and only if ℓ𝑃𝐿𝑆(𝛾) = 0.

5.3 Distributional robustness to bounded shifts

We first assume the existence of a noisy proxy 𝑊 , conditionally independent of

(𝑋, 𝑌,𝐻) given 𝐴 (see Figure 5-2).

Assumption 5.2 (Single proxy with additive noise). In the context of Assumption 5.1,

𝑊 is generated as follows

𝑊 := 𝛽⊤
𝑊𝐴+ 𝜖𝑊 ,

where 𝜖𝑊 has mean zero, bounded covariance, and is independent of (𝐴, 𝜖). In addition,

we assume that the second moment matrix E[𝑊𝑊⊤] is invertible.

Under mild identifiability conditions (e.g., that 𝛽𝑊 is full rank) one can show (see

Section C.3.2) that

ℓ𝑃𝐿𝑆(𝐴; 𝛾) = 0 ⇐⇒ ℓ𝑃𝐿𝑆(𝑊 ; 𝛾) = 0, (5.9)
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Hence, a single proxy is enough (in the population case) to identify whether the sharp

constraint ℓ𝑃𝐿𝑆(𝛾) = 0 holds, representing invariance to interventions of arbitrary

strength. This corresponds to the fact that if 𝐴 is a valid instrumental variable, then

so is 𝑊 (Hernán and Robins, 2006).

However, we consider interventions on 𝐴 that are not of arbitrarily large strength.

With that in mind, in Section 5.3.1, we demonstrate that (i) when a single proxy 𝑊

is used in place of 𝐴, a robustness guarantee holds, but the robustness set is reduced

relative to (5.8), (ii) the extent of this reduction depends on the signal-to-variance

relationship in 𝑊 , and (iii) this relationship is not generally identifiable from the

observational distribution over (𝑋, 𝑌,𝑊 ) alone. In Section 5.3.2, we show that in the

setting where two proxies are available, the same guarantees as for an observed 𝐴 can

be obtained. We do so constructively, giving a regularization term whose population

version is equal to ℓ𝑃𝐿𝑆(𝐴; 𝛾).

5.3.1 Robustness with a single proxy

First, we establish the robustness set of Anchor Regression when a single proxy is

used in place of 𝐴. We refer to this as Proxy Anchor Regression, to distinguish it

from the case when 𝐴 is observed, but the only difference from Definition 5.1 is that

𝑊 is used in place of 𝐴.

Definition 5.2 (Proxy Anchor Regression). Let ℓ𝐿𝑆, ℓ𝑃𝐿𝑆 be defined as in Equations (5.4)

and (5.6). We define

ℓ𝑃𝐴𝑅(𝑊 ; 𝛾, 𝜆) := ℓ𝐿𝑆(𝛾) + 𝜆ℓ𝑃𝐿𝑆(𝑊 ; 𝛾), (5.10)

where 𝜆 ≥ −1 is a hyperparameter and we suppress the dependence on 𝑋,𝑌 in the

notation.
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Figure 5-3: Test performance under interventions 𝑑𝑜(𝐴 := (𝜈1, 𝜈2)) which give rise
to different test distributions over 𝑋 and 𝑌 . Each dot corresponds to a different
intervention (i.e., test distribution on 𝑋,𝑌 ), and the color gives the resulting mean
squared prediction error (MSPE). (Far Left) OLS performs well for interventions in
the set 𝐶OLS (solid circle), corresponding to the training covariance of 𝐴. However,
it performs poorly under interventions far from this region (e.g., top left). (Middle
Left) Anchor Regression (AR) minimizes the worst-case loss over interventions on
𝐴 within the region 𝐶𝐴(𝜆1) (cf., (5.8)), a re-scaling of 𝐶OLS. There is a trade-off,
with better performance than OLS under large interventions, but worse performance
under small interventions. Given two proxies 𝑊,𝑍, we introduce Cross-Proxy Anchor
Regression (xPAR, cf., (5.14)) and prove that it minimizes the same worst-case loss.
(Middle Right) When only a single proxy 𝑊 is used in place of 𝐴, the result is
a weaker guarantee, in the form of a smaller robustness set 𝐶𝑊 (𝜆1) (cf., (5.11)) for
the same value of 𝜆1. The shape of this set depends on the noise in the proxy along
different dimensions. (Far Right) As a result, there does not generally exist a 𝜆2

such that 𝐶𝑊 (𝜆2) = 𝐶𝐴(𝜆1). If we choose some 𝜆2 > 𝜆1 such that 𝐶𝐴(𝜆1) ⊂ 𝐶𝑊 (𝜆2),
we enforce a stronger constraint than intended, resulting in an unwanted trade-off
between performance and robustness.

Theorem 5.1. Under Assumptions 5.1 and 5.2, for all 𝛾 ∈ R𝑑𝑋 and for all 𝜆 ≥ −1

ℓ𝑃𝐴𝑅(𝑊 ; 𝛾, 𝜆) = sup
𝜈∈𝐶𝑊 (𝜆)

E𝑑𝑜(𝐴:=𝜈)[(𝑌 − 𝛾⊤𝑋)
2
],

where the robustness set is given by

𝐶𝑊 (𝜆) := {𝜈 : E[𝜈𝜈⊤] ⪯ E[𝐴𝐴⊤] + 𝜆Ω𝑊} (5.11)
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and where Ω𝑊 is defined as

Ω𝑊 := E[𝐴𝑊⊤]
(︀
E[𝑊𝑊⊤]

)︀−1E[𝑊𝐴⊤]. (5.12)

Intuitively, Ω𝑊 defines a signal-to-variance relationship in 𝑊 , and this determines the

robustness guarantee. In the case where both 𝐴,𝑊 ∈ R are one-dimensional, and 𝐴

has unit variance, the robustness sets simplify to

𝐶𝑂𝐿𝑆 = {𝜈 : E[𝜈2] ≤ 1}

𝐶𝑊 (𝜆) = {𝜈 : E[𝜈2] ≤ 1 + 𝜆 · 𝜌𝑊}

𝐶𝐴(𝜆) = {𝜈 : E[𝜈2] ≤ 1 + 𝜆},

where 𝜌𝑊 := 𝛽2
𝑊/(𝛽2

𝑊 + E𝜖2𝑊 ) < 1 is the signal-to-variance ratio of 𝑊 , also referred

to as the reliability ratio in the measurement error literature (Fuller, 1987). Thus, in

the one-dimensional case, the robustness set using 𝑊 is strictly smaller than the one

obtained by using 𝐴 when 𝜆 > 0, except in the case where 𝜖𝑊 = 0 a.s. This result

generalizes to higher dimensions.

Proposition 5.1. Assume Assumptions 5.1 and 5.2 and that E[𝜖𝑊 𝜖⊤𝑊 ] ∈ R𝑑𝑊×𝑑𝑊 is

positive definite. Then for 𝜆 > 0

𝐶𝑂𝐿𝑆 ⊆ 𝐶𝑊 (𝜆) ⊂ 𝐶𝐴(𝜆),

and the set 𝐶𝑊 (𝜆) increases monotonically when E[𝜖𝑊 𝜖⊤𝑊 ] decreases w.r.t. the partial

matrix ordering. If 𝑑𝑊 = 𝑑𝐴, 𝛽𝑊 is full rank, and 𝜖𝑊 = 0 a.s., then 𝐶𝑊 (𝜆) = 𝐶𝐴(𝜆).

If Ω𝑊 were known, we could choose a larger 𝜆* such that 𝐶𝐴(𝜆) ⊆ 𝐶𝑊 (𝜆*). In contrast

to the one-dimensional case, where we could choose 𝜆* = 𝜆/𝜌𝑊 to obtain an equality

𝐶𝐴(𝜆) = 𝐶𝑊 (𝜆*), we cannot generally achieve equality in higher dimensions (see

Figure 5-3).

However, Ω𝑊 is not generally identifiable from the observed distribution over (𝑋, 𝑌,𝑊 )
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alone. Moreover, SCMs compatible with the observed distribution react differently

under interventions on 𝐴 and yield different coefficients that are optimal w.r.t. in-

terventions in 𝐶𝐴(𝜆). Consequently, in this setting, it is not possible to recover the

guarantees of Anchor Regression without further assumptions (e.g., on Ω𝑊 ). See

Supplement C.2 for an example.

Note that these results apply regardless of whether or not 𝛽𝑊 is full rank. However, if

𝛽𝑊 is not full rank, then there will be directions of variation in 𝐴 that are not reflected

in 𝑊 , and we will not be able to achieve additional robustness (beyond that of OLS)

against interventions along these directions.

5.3.2 Robustness with two proxies

We now show that if we have two (sufficiently different) proxies for 𝐴, then it is

possible to recover the original robustness set using a different regularization term. We

denote these proxies by 𝑊,𝑍, as shown in Figure 5-2. In this setting, the structural

causal model over (𝑋, 𝑌,𝐻,𝐴) can still be written in the form of Equation (5.1), where

we make the following additional assumptions.

Assumption 5.3 (Proxies with additive noise). In the context of Assumption 5.1, 𝑍,𝑊

are generated as follows

𝑊 := 𝛽⊤
𝑊𝐴+ 𝜖𝑊 and 𝑍 := 𝛽⊤

𝑍𝐴+ 𝜖𝑍 ,

where 𝜖𝑊 , 𝜖𝑍 are mean-zero with bounded covariance, and 𝜖𝑊 , 𝜖𝑍 , 𝜖, 𝐴 are jointly

independent.

Assumption 5.4. The dimensions of 𝐴,𝑊,𝑍 are equal, 𝑑𝐴 = 𝑑𝑊 = 𝑑𝑍 , and 𝛽𝑊 , 𝛽𝑍 are

full-rank.

Note that Assumption 5.4 also implies that the second moment matrix E[𝑍𝑊⊤] is

invertible.
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To build intuition, note that this assumption is trivially satisfied in the setting where

𝑊 = 𝐴 + 𝜖𝑊 and 𝑍 = 𝐴 + 𝜖𝑍 , i.e., where 𝑊 and 𝑍 are two noisy observations of

𝐴. More generally, Assumption 5.4 rules out directions of variation in 𝐴 that are

undetectable in 𝑊 or 𝑍.

In this setting we introduce the following loss, and prove that it is equal to the

worst-case loss obtained when 𝐴 is observed (c.f., (5.7))

Definition 5.3 (Cross-Proxy Anchor Regression).

ℓ×𝑃𝐴𝑅(𝑊,𝑍; 𝛾, 𝜆) := ℓ𝐿𝑆(𝑋, 𝑌 ; 𝛾) + 𝜆ℓ×(𝑊,𝑍; 𝛾),

where we refer to

ℓ×(𝑊,𝑍; 𝛾) := E[𝑅(𝛾)𝑊⊤]E[𝑍𝑊⊤]
−1E[𝑍𝑅(𝛾)⊤], (5.13)

as the cross-proxy regularization term.

Theorem 5.2. Under Assumptions 5.1, 5.3 and 5.4, for any 𝛾 ∈ R𝑑𝑋 and any 𝜆 ≥ −1

ℓ×𝑃𝐴𝑅(𝑊,𝑍; 𝛾, 𝜆) = sup
𝜈∈𝐶𝐴(𝜆)

E𝑑𝑜(𝐴:=𝜈)[(𝑌 − 𝛾⊤𝑋)
2
], (5.14)

where 𝐶𝐴(𝜆) = {𝜈 : E[𝜈𝜈⊤] ⪯ (1 + 𝜆)E[𝐴𝐴⊤]}.

ℓ×𝑃𝐴𝑅 is convex in 𝛾 and has a closed form solution for its minimizer based only on

the population moments of 𝑋, 𝑌,𝑊 and 𝑍 (see Proposition A4 in the supplement).

To build intuition for why Assumption 5.4 is required for this result, consider an

example where 𝑊,𝑍 are both scalars (𝑑𝑊 = 𝑑𝑍 = 1) and 𝐴 has two independent

dimensions (𝐴1, 𝐴2). In this example, if both proxies measure the same dimension

𝐴1, then variation in 𝐴2 is not detectable in either proxy, and we cannot optimize for

robustness to interventions on 𝐴2. On the other hand, if 𝑊 only measures 𝐴1 (e.g.,

𝑊 = 𝐴1 + 𝜖𝑊 ), and 𝑍 only measures 𝐴2 (e.g., 𝑍 = 𝐴2 + 𝜖𝑍), then we cannot use 𝑍

to identify the signal-to-variance ratio of 𝑊 , and vice-versa. In this case, (𝑊,𝑍) is
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effectively a single two-dimensional proxy in the framework of Section 5.3.1, where we

showed that recovering the guarantees of Anchor Regression is not generally possible.

Intuitively, we need all directions of variation in 𝐴 to have some influence on both

proxies (i.e., 𝛽𝑊 , 𝛽𝑍 full rank), and hence require that 𝑊,𝑍 have sufficiently large

dimension.

5.4 Targeted anchor regression: Incorporating additional

shift information

We now generalize Anchor Regression to an estimator that is targeted to be robust

against particular shifts, and demonstrate that we can similarly handle this setting

when only proxies of 𝐴 are observed. In Section 5.2.3 we showed that Anchor Regression

minimizes the worst-case loss over the set 𝐶𝐴(𝜆) of all interventions 𝑑𝑜(𝐴 := 𝜈) where

E[𝜈𝜈⊤] ⪯ (1 + 𝜆)E[𝐴𝐴⊤]. For deterministic 𝜈, 𝐶𝐴(𝜆) is an ellipsoid centered at 0,

and its width in each direction is proportional to the variation of 𝐴 in that direction.

However, we may desire a different robustness set: For instance, if we anticipate a

particular shift 𝜇𝜈 in the mean of 𝐴, or if we want to add extra protection against

particular directions of variation in 𝐴. This can be formalized as a robustness set

defined by an ellipsoid that may not be centered at 0, nor be proportional to E[𝐴𝐴⊤].

The estimator developed in this section can incorporate such prior beliefs.

More formally, instead of considering robustness against interventions 𝑑𝑜(𝐴 := 𝜈) over

the set 𝜈 ∈ 𝐶𝐴(𝜆), we now assume that we have additional information on the nature

of 𝜈, which is specified in the form of a vector 𝜇𝜈 and a symmetric PSD matrix Σ𝜈 .

We introduce a new method, Targeted Anchor Regression, minimizing what we refer

to as the targeted loss. We prove in Propositions 5.2 and 5.3 that minimizing this

objective can be interpreted in two ways: First, as minimizing an expected loss over

interventions 𝜈 with a known mean and covariance, or minimizing a worst-case loss

over deterministic interventions 𝜈 contained in an ellipsoid robustness set (as discussed

above). This is visualized in Figure 5-4.
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Figure 5-4: Targeted Anchor Regression allows for minimizing the worst-case loss in
regions (dashed ellipse) that may differ in location, size, and shape from the regions in
Figure 5-3 (OLS copied for reference). Every point 𝜈 represents a test distribution
𝑑𝑜(𝐴 := 𝜈), the color indicating the mean squared prediction error in this distribution.
Cross marks the origin. The TAR estimator achieves its minimal test loss at the center
of the targeted region.

5.4.1 Targeting when 𝐴 is observed

We first consider the case when 𝐴 is observed during training, and the mean and

covariance of 𝜈 are known, given by 𝜇𝜈 ,Σ𝜈 . Importantly, for a given 𝛾 we have

E[𝑅(𝛾) | 𝐴 = 𝑎] = 𝑏⊤𝛾 𝑎, where, writing Σ𝐴 := E[𝐴𝐴⊤],

𝑏⊤𝛾 := E[𝑅(𝛾)𝐴⊤]Σ−1
𝐴 . (5.15)

Definition 5.4 (Targeted Anchor Regression). Let 𝜇𝜈 ∈ R𝑑𝐴 , and Σ𝜈 ∈ R𝑑𝐴×𝑑𝐴 , where

Σ𝜈 is a symmetric PSD matrix.

ℓ𝑇𝐴𝑅(𝐴;𝜇𝜈 ,Σ𝜈 , 𝛾, 𝛼)

:= ℓ𝐿𝑆(𝛾) + 𝑏⊤𝛾 (Σ𝜈 − Σ𝐴) 𝑏𝛾 + (𝑏⊤𝛾 𝜇𝜈 − 𝛼)
2
, (5.16)

where 𝑏𝛾 is defined in (5.15), and Σ𝐴 is the covariance of 𝐴.

Proposition 5.2. Under Assumption 5.1, and the assumption that 𝜈 ⊥⊥ 𝜖, we have, for

all 𝛾 ∈ R𝑑𝑋 , 𝛼 ∈ R,

ℓ𝑇𝐴𝑅(𝐴;𝜇𝜈 ,Σ𝜈 ; 𝛾, 𝛼) = E𝑑𝑜(𝐴:=𝜈)[(𝑌 − 𝛾⊤𝑋 − 𝛼)
2
],
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where 𝜇𝜈 = E[𝜈] and Σ𝜈 is the covariance matrix of 𝜈.

Importantly, the objective in Equation (5.16) is convex in (𝛾, 𝛼), and has a closed-form

solution (see Proposition A5 in the supplement). If 𝜈 is a known constant, then this

corresponds to performing OLS using both 𝑋 and 𝐴 as predictors during training, and

using the known value of 𝜈 for 𝐴 for prediction (see Supplement C.3.3). However, if

for example 𝜈 exhibits more variance than 𝐴 along certain directions, and less variance

along others, then the targeted regression parameter differs from standard solutions.

Optimizing the objective in Equation (5.16) can also be interpreted as optimizing a

worst-case loss over interventions 𝑑𝑜(𝐴 := 𝜈) in a certain set.

Proposition 5.3. Under Assumption 5.1, we have, for all 𝜇𝜈 ∈ R𝑑𝐴 and Σ𝜈 ∈ R𝑑𝐴×𝑑𝐴

being a symmetric positive definite matrix, that

argmin
𝛾,𝛼

ℓ𝑇𝐴𝑅(𝐴;𝜇𝜈 ,Σ𝜈 , 𝛾, 𝛼)

= argmin
𝛾,𝛼

sup
𝜈∈𝑇 (𝜇𝜇,Σ𝜈)

E𝑑𝑜(𝐴:=𝜈)[(𝑌 − 𝛾⊤𝑋 − 𝛼)
2
],

where the supremum is taken over (deterministic or random) shifts 𝜈 of the form

𝜈 = 𝜇𝑣 + 𝛿, where 𝛿 satisfies the constraint that E[𝛿𝛿⊤] ⪯ Σ𝜈. If 𝛿 is random, we

require that it is independent of all other random variables. In other words, we can

write that 𝜈 lies in the set

𝑇 (𝜇𝜈 ,Σ𝜈) := {𝜈 : E[(𝜈 − 𝜇𝜈)(𝜈 − 𝜇𝜈)
⊤] ⪯ Σ𝜈}.

Note that the expectation in the constraint 𝑇 is with respect to the random variable

𝜈. This covers the case in which 𝜈 (and hence 𝛿) is deterministic, in which case it is

equal to a fixed value with probability one.

Proposition 5.3 shows that Targeted Anchor Regression generalizes Anchor Regression

to a broader class of robustness sets, that need not depend explicitly on E[𝐴𝐴⊤]. In

particular, Anchor Regression can be viewed as a special case, where Σ𝜈 = (1 + 𝜆)Σ𝐴

and E[𝜈] = 0, in which case the objectives are equal for 𝛼 = 0. In the following, we
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adopt the interpretation of 𝜇𝜈 ,Σ𝜈 as specifying a mean and covariance of 𝜈 (Proposition

5.2).

5.4.2 Targeting with proxies

In the single-proxy setting, we define Proxy Targeted Anchor Regression as using 𝑊

in place of 𝐴 in Equation (5.16). We assume a known mean and covariance of 𝑊

under P𝑑𝑜(𝐴:=𝜈), used in place of 𝜇𝜈 ,Σ𝜈 . By similar arguments to those in Section 5.3.1,

this approach does not generally yield the optimal predictor, in a way that depends

on the (unidentified) signal-to-variance relationship in 𝑊 . Given the similarity, we

defer details to Supplement C.4.

When two proxies𝑊,𝑍 are available, we can recover the statement from Proposition 5.2

using a modified estimator, by similar arguments to those in Section 5.3.2. The core

observation is that we can construct a linear term

𝑎⊤𝛾 := E[𝑅(𝛾)𝑍⊤](E[𝑊𝑍⊤])
−1
, (5.17)

which, if 𝛽𝑍 = 𝛽𝑊 = Id can be seen as a linear IV estimate of 𝑏⊤𝛾 in Equation (5.15), an

estimator used in the measurement error literature given repeated noisy measurements

of a single variable (Fuller, 1987). In our case, Equation (5.17) identifies 𝑏⊤𝛾 only up

to the linear transformation 𝛽𝑊 , but this is sufficient to identify the targeted loss.

Definition 5.5 (Cross-Proxy Targeted Anchor Regression). Let �̃� ∈ R𝑑𝑊 , and Σ̃𝑊 ∈

R𝑑𝑊×𝑑𝑊 , where Σ̃𝑊 is a symmetric positive semi-definite matrix. We define

ℓ×𝑇𝐴𝑅(𝑊,𝑍; �̃�, Σ̃𝑊 , 𝛾, 𝛼)

:= ℓ𝐿𝑆(𝛾) + 𝑎⊤𝛾

(︁
Σ̃𝑊 − Σ𝑊

)︁
𝑎𝛾 +

(︀
𝑎⊤𝛾 �̃�− 𝛼

)︀2
,

where 𝑎𝛾 is defined in (5.17).

In Theorem C.1 (Supplement C.4) we prove, analogous to Theorem 5.2, that this

population objective is equal to that of Targeted Anchor Regression (5.16).
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5.5 Synthetic experiments

In Section 5.5.1, we show that Cross-Proxy Anchor Regression (xPAR) outperforms

Proxy Anchor Regression (PAR) in settings with noisy proxies. As the noise increases,

xPAR continues to match Anchor Regression (AR) test performance under intervention,

while PAR approaches OLS. In Section 5.5.2, we demonstrate the risks of attempting

to correct for this noise by assuming a certain signal-to-variance ratio. In Section 5.5.3

we demonstrate another benefit of xPAR over PAR, giving an example where it

places more weight on causal predictors relative to PAR. Finally, in Section 5.5.4, we

highlight the trade-off between using Targeted Anchor Regression (TAR) vs. OLS

and AR, showing that TAR improves performance under the targeted shift, at the

cost of incurring additional error on the training distribution. Code for experiments is

available at https://github.com/clinicalml/proxy-anchor-regression.

5.5.1 Mean squared prediction error under intervention

We demonstrate on synthetic data that xPAR recovers similar test performance to AR,

while the performance of PAR degrades as the signal-to-variance ratio (SVR) of the

proxies decreases. We simulate training data (at different levels of signal-to-variance)

from an SCM with the structure given in Figure 5-2, fix 𝜆 := 5 and fit PAR and xPAR.

We then choose a fixed intervention 𝜈, and simulate test data under the intervened

distribution, evaluating our learned predictors.

In Figure 5-5, we see that the test errors for xPAR and AR coincide (see Theorem 5.2)

while PAR interpolates between OLS and AR, depending on the signal-to-variance

ratio (see Proposition 5.1). Section C.5 gives additional implementation details on

this and remaining experiments.
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Figure 5-5: Mean squared prediction error (MSPE) under interventions 𝑑𝑜(𝐴 := 𝜈) for
estimators PAR and xPAR. We display population losses for the population parameters
as dashed lines, and median empirical MSPE when fit from data as solid lines, with
shaded regions covering the 25% to 75% quantiles.
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Figure 5-6: Estimates of worst-case mean squared prediction error (MSPE) over a
robustness set 𝐶. PAR is applied assuming that the signal-to-variance ratio is 0.4,
which gives an estimate of the worst-case MSPE over 𝐶 (orange). Green line shows
actual worst-case MSPE over 𝐶 at different underlying signal-to-variance ratios.

5.5.2 Misspecified signal-to-variance ratio

In Section 5.3.1, we noted that if the (unidentified) signal-to-variance ratio (SVR)

were known, we could correct for it when using PAR with a single proxy. Here we

demonstrate the implications of incorrectly specifying this correction. We simulate

data from the same SCM as in Section 5.5.1, with varying (true) signal-to-variance

ratio.

In Figure 5-6, for the predictor chosen by PAR, we plot the estimated worst-case

MSPE (in orange), using a correction factor assuming that the signal-to-variance ratio

is 0.4, against the true worst-case MPSE (in green). We observe that if the true

signal-to-variance ratio is smaller than our assumption of 0.4, then our estimate is too

conservative, and vice versa if the true signal-to-variance ratio is larger.
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5.5.3 Causal and anti-causal predictors

We demonstrate the ability of xPAR to select causal predictors, in a synthetic setting

where predictors 𝑋 may contain both causal and anti-causal predictors. We simulate

data from an SCM (Figure 5-7 [top]), where one anchor, 𝐴1, is a parent of the causal

predictors, while the other, 𝐴2, is a parent of the anti-causal predictors. We consider

two identically distributed noisy proxies 𝑊,𝑍 of 𝐴 := (𝐴1, 𝐴2). The challenge is that

𝐴2 is measured with significantly more noise than 𝐴1, across both proxies.

As seen in Figure 5-7 [bottom] PAR places more weight on anti-causal features. In

effect, the noise in the measurement of 𝐴2 causes 𝑋anti-causal to appear less sensitive

to shifts in 𝐴2. This is an ideal scenario for xPAR, as it is designed to deal with

additional noise by leveraging both proxies. Consequently, when two proxies 𝑊,𝑍 are

available, xPAR places more weight on the causal predictors, relative to PAR.

5.5.4 Targeted shift

We demonstrate the trade-off made by Targeted Anchor Regression (TAR) versus

Anchor Regression (AR), considering the case when 𝐴 is observed for simplicity. We

simulate training data and fit estimators 𝛾OLS, 𝛾AR and 𝛾TAR, where 𝛾TAR is targeted

to a particular mean and covariance of a random intervention 𝜈, and we select 𝜆 for

𝛾AR such that this intervention is contained within 𝐶𝐴(𝜆).

We then simulate test data from two distributions: P𝑑𝑜(𝐴:=𝜈) (i.e., the shift occurs),

and P (where it does not), and evaluate the mean squared prediction error (MSPE).

The results are shown in Figure 5-8, and demonstrated that TAR performs better than

AR and OLS in the first scenario, but this comes at the cost of worse performance on

the training distribution.
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Figure 5-7: (a) SCM with 𝐴1, 𝐴2 (unobserved), target 𝑌 and predictor variables
𝑋causal, 𝑋anti-causal ∈ R3. Dotted lines indicate higher noise. (b): Absolute value of
regression coefficients. PAR places more weight on anti-causal predictors, while xPAR
places more weight on causal predictors.

5.6 Real-data experiment: Pollution

We test our approach on a real-world heterogeneous dataset of hourly pollution

readings in five cities in China, taken over several years (Liang et al., 2016), with

most data available from 2013-15. Our prediction target is PM2.5 concentration, a

measure of pollution, and covariates are primarily weather-related, including dew

point, temperature, humidity, pressure, wind direction / speed, and precipitation.

Real-World Proxy (Temperature): Pollution tends to be seasonal in this dataset, and

so we construct our training and test environments using seasons: For each of the

four seasons, we train only on the other three seasons, and evaluate on the held-out

season. We do this for each city, treating each city and held-out season as a separate

evaluation. This leads to 20 separate scenarios.

With this variation in mind, we use temperature as a real-world proxy, and treat

it as unavailable at test time. We also construct two noisier copies of temperature,

which we refer to as 𝑊,𝑍, adding independent Gaussian noise while controlling the

signal-to-variance ratio (in the training distribution) at Var(Temp)/Var(𝑊 ) = 0.9.

Estimators / Benchmarks: For Proxy and Cross-Proxy AR (PAR, xPAR, see Sec-

232



Anticipated shift not occuring

Anticipated shift occuring

1.6 1.8 2.0 2.2 2.4

0
5
10
15

0
5
10
15

MSPE

TAR(A)
AR(A)
OLS

Figure 5-8: Empirical mean squared prediction error of TAR, OLS and AR under the
shifted distribution and the training distribution.

tion 5.3), we choose 𝜆 ∈ [0, 40] by leave-one-group-out cross-validation on the three

training seasons, using the first year (2013) of data. For instance, if “winter” is the

test season, then we choose the value of 𝜆 that performs best on average across combi-

nations of the other seasons e.g., training on the fall & summer data and evaluating

on the spring data.

When using temperature as a single proxy in PAR, we observe that in 9 out of 20

scenarios, 𝜆 = 40 is chosen, but in the remaining 11, 𝜆 = 0 is chosen, which is

equivalent to OLS. For comparability, we use the same values of 𝜆 for PAR(𝑊 )

and xPAR(𝑊,𝑍). For Proxy Targeted AR and Cross-Proxy Targeted AR (PTAR,

xPTAR, see Section 5.4), we use the mean and variance of the relevant variables (e.g.,

temperature, 𝑊 , 𝑍) in the held-out season to target our predictors.

Our primary benchmark is OLS (without temperature). We also compare to (a) OLS

that uses temperature during train and test [OLS (TempC)], and (b) OLS that includes

the temperature during training, and uses the mean test value for temperature during

prediction [OLS + Est. Bias]. We present the results for the 9 scenarios where 𝜆 > 0

in Table 5.1, since PAR with 𝜆 = 0 is equivalent to OLS (aggregate results in Table C.1

in the supplement).

Results: For both PAR and PTAR, we see improvement over OLS on average across

scenarios, with limited downside (e.g., in the worst scenario for PTAR relative to OLS,

the additional MSE incurred is 0.001). In Figure C-4 (Supplement), we observe that

PAR and PTAR achieve gains in two different ways: PAR increases the coefficients of
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Table 5.1: Mean: Average MSE (lower is better) over 9 scenarios where 𝜆 > 0. # Win:
Number of scenarios where the estimator has lower MSE than OLS. Best (Worst):
Smallest (Largest) difference to OLS across environments, where lower is better.

Estimator Mean # Win Best Worst

OLS 0.537
OLS (TempC) 0.536 5 -0.028 0.026
OLS + Est. Bias 0.569 4 -0.072 0.150

PAR (TempC) 0.531 6 -0.041 0.006
PAR (W) 0.531 6 -0.037 0.006
xPAR (W, Z) 0.531 6 -0.039 0.007

PTAR (TempC) 0.525 8 -0.061 0.001
PTAR (W) 0.529 8 -0.038 0.001
xPTAR (W, Z) 0.526 7 -0.059 0.001

humidity and dew point relative to OLS, while PTAR reduces them and incorporates

a correction into the intercept.

5.7 Discussion and related work

Learning a predictive model that performs well under arbitrarily strong causal interven-

tions is an ambitious goal. In this work, we have argued that even if causal invariance

is achievable, it may not be desirable: A model whose performance is invariant to

arbitrarily strong interventions may have poor performance when the test distribution

does not differ too much from the training distribution.

There is a large body of work that seeks to learn causal models as a route to achieving

invariance (Rojas-Carulla et al., 2018; Magliacane et al., 2018), or that uses knowledge

of the causal graph to select predictors with invariant performance under a set of

known interventions (Subbaswamy et al., 2019). Similarly, invariant risk minimization

(IRM) seeks a predictor Φ such that E(𝑌 | Φ(𝑋)) is invariant across a set of discrete

environments (Arjovsky et al., 2019; Xie et al., 2020; Krueger et al., 2020; Bellot

and van der Schaar, 2020). Recent work has pointed to the theoretical and practical

difficulty of learning such a predictor for IRM (Rosenfeld and Risteski, 2020; Kamath
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et al., 2021; Guo et al., 2021), in part due to the fact that recovering a truly invariant

model, even in linear settings, requires a large number of environments. Generalization

in non-linear settings requires sufficient overlap between environments and strong

restrictions on the model class (e.g., Christiansen et al., 2020). In contrast to all of

the above, we trade off between in-distribution performance and invariance explicitly,

instead of seeking invariance as a primary goal. Moreover, since we allow for 𝐴

to influence 𝑌 directly and through hidden variables, invariance may not even be

achievable, but we can still formulate a worst-case loss for bounded interventions.

We argue for incorporating prior knowledge about potential shifts by (1) identifying

proxies for relevant factors of variation (i.e., anchor variables), and (2) specifying

plausible sets of interventions on these factors of variation. We build upon the causal

framework of Anchor Regression (Rothenhäusler et al., 2021), extending it in two

important ways.

To start, we relax the assumption that the anchor variables are directly observed.

Instead, we only assume access to proxies, and prove that identification of the worst-

case loss is feasible with two proxies. The challenge of identifying the worst-case loss

is related to the problem of identifying causal effects with noisy proxies of unmeasured

confounders (Tchetgen Tchetgen et al., 2020; Miao and Tchetgen, 2018; Shi et al., 2018;

Kuroki and Pearl, 2014), and the challenge of learning under classical measurement

error (Fuller, 1987; Hyslop and Imbens, 2001; Bound et al., 2001). Our observation

that a single proxy will underestimate the worst-case loss is related to the well-known

problem of regression dilution bias (Frost and Thompson, 2000), where performing

linear regression under measurement error leads to bias in parameter estimation. In

contrast, we are not concerned with causal / structural parameter estimation, which

is generally not possible in the models we consider, but rather estimating a worst-case

loss under a class of interventions. Srivastava et al. (2020) also consider distributional

shift in unmeasured variables for which proxies are available, and apply techniques for

handling worst-case sub-populations from DRO (Duchi et al., 2020b). In contrast, we

consider causal interventions on 𝐴 that could lie outside the support of the training
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data, which cannot be represented as a sub-population. Moreover, they consider the

single-proxy case, and give a generalization bound that incorporates the impact of

noise, while under our assumptions we are able to recover guarantees as if 𝐴 were

observed, using two proxies.

We then introduce Targeted Anchor Regression, a method for incorporating additional

prior knowledge on the strength and direction of shifts in anchor variables. This

method can be interpreted as allowing for specification of a broader class of robustness

sets, beyond those considered in Rothenhäusler et al. (2021), or as specifying the mean

and covariance of the anchors at test time. We prove analogous results with proxies in

this setting, and evaluate this strategy empirically in Section 5.6, targeting our loss to

a particular mean and variance over temperature in the held-out season.

Our work contributes to a growing body of literature that seeks to generalize Anchor

Regression to new settings, whether allowing for unobserved anchors and a broader

class of robustness sets (as in our work), or generalizing to discrete and censored

outcomes, as in Kook et al. (2022).
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Chapter 6

Evaluating Robustness to Dataset Shift

via Parametric Robustness Sets

This chapter (and accompanying appendix) was previously published as (Thams et al.,

2022) at NeurIPS 2022.

6.1 Introduction

Predictive models may perform poorly outside of the training distribution, a problem

broadly known as dataset shift (Quiñonero-Candela et al., 2008). In high-stakes

applications, such as healthcare, it is important to understand the limitations of a

model in advance (Finlayson et al., 2021): given a model trained on data from one

hospital, how will it perform under changes in the population of patients, in the

incidence of disease, or in the treatment policy?

In this chapter, our goal is to proactively understand the sensitivity of a predictive

model to dataset shift, using only data from the training distribution. This requires

domain knowledge, to specify what type of distributional changes are plausible. For-

mally, for a model 𝑓(𝑋) trained on data from P(𝑋, 𝑌 ), with loss function ℓ(𝑓(𝑋), 𝑌 ),

we seek to understand the loss of the model under a set of plausible future distributions
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𝒫 . We seek to evaluate the worst-case loss over 𝒫 ,

sup
𝑃∈𝒫

E𝑃 [ℓ(𝑓(𝑋), 𝑌 )], (6.1)

and provide an interpretable description of a distribution 𝑃 which maximizes this

objective. If the value of the worst-case loss is low, this can build confidence prior to

deployment, and otherwise, examining the worst-case distribution 𝑃 can help identify

weaknesses of the model. To illustrate, we use the following running example, inspired

by Subbaswamy et al. (2021).

Example 6.1 (Changes in laboratory testing). We seek to classify disease (𝑌 ) based

on the age (𝐴) of a patient, whether a laboratory test has been ordered (𝑂), and

test results (𝐿) if a test was ordered. The performance of a predictive model may be

sensitive to changes in testing policies, as the fact that a test has been ordered itself is

predictive of disease. Figure 6-1a gives a plausible causal relationship between variables.

Let P(𝑂 = 1|𝐴, 𝑌 ) = 𝜎(𝜂(𝐴, 𝑌 )), where 𝜎 is the sigmoid function and 𝜂(𝐴, 𝑌 ) is

the log-odds. In Figure 6-1b, we show the loss under a set of new distributions

parameterized by 𝛿 = (𝛿0, 𝛿1), where we modify P𝛿(𝑂 = 1|𝐴, 𝑌 ) = 𝜎(𝜂(𝐴, 𝑌 )+ 𝑠(𝑌 ; 𝛿))

for a shift function 𝑠(𝑌 ; 𝛿) = 𝛿1 · 𝑌 + 𝛿0 · (1 − 𝑌 ), which modifies the log-odds of

testing for both sick and healthy patients. If 𝛿0, 𝛿1 are unconstrained, the worst-case

occurs when all healthy patients are tested, and no sick patients are tested.

The first challenge is to define a set of possible distributions 𝒫 such that each distri-

bution 𝑃 ∈ 𝒫 satisfies two desiderata: First, they should be causally interpretable

and simple to specify, without placing unnecessary restrictions on the data-generating

process. Second, they should be realistic, which often entails bounding the magnitude

of the shift. We construct causally interpretable shifts by defining perturbed distribu-

tions P𝛿 using changes in causal mechanisms, parameterized by a finite-dimensional

parameter 𝛿. Our main requirement is that the shifting mechanisms follow a condi-

tional exponential family distribution. For discrete variables, this places no restriction

on P: In Example 6.1, 𝑂 is binary and the log-odds 𝜂(𝐴, 𝑌 ) can be any function of

𝐴, 𝑌 . We also demonstrate that constraining 𝛿 can ensure that shifts are realistic:
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Figure 6-1: (a) Causal graph for Example 6.1, with a shift in conditional testing
rates, parameterized by 𝛿order. (b) We illustrate a shift using 𝑠(𝑌 ; 𝛿order) = 𝛿1 · 𝑌 +
𝛿0(1 − 𝑌 ), where 𝛿order = (𝛿0, 𝛿1). Here we plot the (non-concave) landscape of the
expected cross-entropy loss of a fixed model over distributions parameterized by (𝛿0, 𝛿1),
with the training distribution given as the black star. Simulation details are given
in Appendix D.1.

The unconstrained worst-case shift in Example 6.1 is implausible, where all healthy

patients (and no sick patients) are tested. Equation (6.1) becomes

sup
𝛿∈Δ

E𝛿[ℓ(𝑓(𝑋), 𝑌 )], (6.2)

where E𝛿 is the expectation in the shifted distribution P𝛿 and Δ is a bounded set of

shifts.

The second challenge is evaluation of the expected loss under shift, as well as finding the

worst-case shift. Under our definition of shifts, we show that the test distribution can

always be seen as a reweighting of the training distribution, allowing for reweighting

approaches, such as importance sampling, to estimate the expected loss under shifts.

While this is practical for some distribution shifts, for others, importance sampling can

lead to extreme variance in estimation. Further, finding the worst-case shift using a

reweighted objective involves maximization over a non-concave objective (see Figure 6-

1), a problem that is generally NP-hard. We derive a second-order approximation to

the expected loss under shift, and show how it can be estimated without the use of

reweighting. When Δ is a single quadratic constraint, we can approximate the general

non-convex optimization problem in Equation (6.2) with a particular non-convex,

quadratically constrained quadratic program (QCQP) for which efficient solvers exist

(Conn et al., 2000, Section 7). We bound the approximation error of this surrogate
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objective, and show in experiments that it tends to find impactful adversarial shifts.

Our contributions are as follows:

1. We provide a novel formulation of robustness sets which are defined using parametric

shifts. This formulation only require that the shifting mechanisms (i.e., conditional

distributions) can be modelled as a conditional exponential family (see Section 6.2).

2. We derive a second-order approximation to the expected loss and provide a bound

on the approximation error. We show that this translates the general non-convex

problem into a particular non-convex quadratic program, for which efficient solvers

exist (see Section 6.3).

3. In a computer vision task, we find that this approach finds more impactful shifts

than a reweighting approach, while taking far less time to compute, and that the

resulting estimates of accuracy are substantially more reliable (see Section 6.4).

6.1.1 Related Work

Distributionally robust optimization/evaluation: Distributionally robust optimization

(DRO) seeks to learn models that minimize objectives like Equation (6.1) with respect

to the model (Duchi and Namkoong, 2021; Duchi et al., 2020b; Sagawa et al., 2020).

We focus on proactive worst-case evaluation of a fixed model, not optimization, similar

to Subbaswamy et al. (2021); Li et al. (2021), but we also differ in our definition

of the set of plausible future distributions 𝒫, often called an “uncertainty set” in

the optimization literature. Prior work often defines these sets using distributional

distances (such as 𝑓 -divergences): For instance, Joint DRO (Duchi and Namkoong,

2021) allows for shifts in the entire joint distribution (i.e., all distributions in an

𝑓 -divergence ball around P(𝑋,𝑌 )), which may be overly conservative. Marginal

DRO (Duchi et al., 2020b) considers shifts in a marginal distribution (e.g., P(𝑋)),

while assuming that the remaining conditionals (e.g., P(𝑌 | 𝑋)) are fixed. However,

this assumption is not applicable in all scenarios: In Example 6.1, for instance, this
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assumption does not hold for a shift in testing policy. Conditional shifts are considered

in recent work that focuses on evaluation (Subbaswamy et al., 2021), using worst-

case conditional subpopulations. However, choosing a plausible size of conditional

subpopulation is often non-obvious. In Appendix D.4 we give a simple lab-testing

example where taking worst-case 20% conditional subpopulations corresponds to an

implausible shift: Healthy patients are always tested, and sick patients never tested.

In contrast, our approach uses explicit parametric perturbations to define shifts, as

opposed to distributional distances or subpopulations. In addition, our approach

allows for shifts in multiple marginal or conditional distributions simultaneously:

In Example 6.1, for instance, we could model a simultaneous change in both the

marginal distribution of age P(𝐴), as well as the conditional distribution of lab testing

P(𝑂 | 𝐴, 𝑌 ), leaving other factors unchanged.

Causality-motivated methods for learning robust models: Several approaches proac-

tively specify shifting causal mechanisms/conditional distributions, and then seek to

learn predictors that have good performance under arbitrarily large changes in these

mechanisms (Subbaswamy et al., 2019; Veitch et al., 2021; Makar et al., 2022; Puli

et al., 2022). Other approaches use environments (Magliacane et al., 2018; Rojas-

Carulla et al., 2018; Arjovsky et al., 2019) or identity indicators (Heinze-Deml and

Meinshausen, 2021) to learn models that rely on invariant conditional distributions.

However, when shifts are not arbitrarily strong, causality-motivated predictors can be

overly conservative. In Example 6.1, a model that ignores all test-related features (and

only uses age as a predictor) is a particularly simple example of a causality-motivated

predictor, with invariant risk over changes in testing policy. Closer to our setting is

a line of work that considers bounded mechanism changes in linear causal models

(Rothenhäusler et al., 2021; Oberst et al., 2021b), where estimation of the worst-case

loss enables learning of worst-case optimal models. Our work can be seen as extending

this idea to more general non-linear causal models, where we focus on evaluation

rather than optimization.

Evaluating out-of-distribution performance with unlabelled samples: A recent line
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of work has focused on predicting model performance in out-of-distribution settings,

where unlabelled data is available from the target distribution (Garg et al., 2022; Jiang

et al., 2022; Chen et al., 2021). In contrast, our method operates using only samples

from the original source distribution, and seeks to estimate the worst-case loss over a

set of possible target distributions.

In Appendix D.6 we give a more detailed discussion of these approaches and others.

6.2 Defining parametric robustness sets

Notation: Let V denote all observed variables, where (𝑋, 𝑌 ) ⊆ V for features 𝑋 and

labels 𝑌 , and use P(V) to denote the probability density/mass function in the training

distribution. We also refer to P as simply “the training distribution”. E[·] and Cov(·, ·)

refer to the mean and covariance in P, and for a shifted distribution P𝛿 (Definition 6.1)

we use E𝛿[·], Cov𝛿(·, ·). For a random variable 𝑍, we use 𝒵 to denote the space of

realizations, and 𝑑𝑍 for dimension e.g., 𝑍 ∈ 𝒵 ⊆ R𝑑𝑍 . For a set of random variables

V = {𝑉1, . . . , 𝑉𝑑}, we use 𝑉𝑖 to denote an individual element, and use PA𝒢(𝑉𝑖) to

denote the set of parents in a directed acyclic graph (DAG) 𝒢, omitting the subscript

when otherwise clear.

We begin with a general definition of a parameterized robustness set of distributions

𝒫 .

Definition 6.1. A parameterized robustness set around P(V) is a family of distributions

𝒫 with elements P𝛿(V) indexed by 𝛿 ∈ Δ ⊆ R𝑑𝛿 , with 0 ∈ Δ, where P0(V) = P(V).

We give examples shortly that satisfy this general definition. To construct such

a robustness set, we consider distributions P𝛿 that differ from P in one or more

conditional distributions (Assumption 6.1). We require that the relevant conditional

distributions can be described by an exponential family.

Definition 6.2 (Conditional exponential family (CEF) distribution). P(𝑊 |𝑍) is a

conditional exponential family distribution if there exists a function 𝜂(𝑍) : R𝑑𝑍 → R𝑑𝑇
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such that the conditional probability density (for continuous 𝑊 ) or probability mass

function (for discrete 𝑊 ) is given by

P(𝑊 |𝑍) = 𝑔(𝑊 ) exp
(︁
𝜂(𝑍)⊤𝑇 (𝑊 )− ℎ(𝜂(𝑍))

)︁
, (6.3)

where 𝑇 (𝑊 ) is a vector of sufficient statistics, 𝑇 (𝑊 ) ∈ R𝑑𝑇 , 𝑔(·) specifies the density

of a base measure and ℎ(𝜂(𝑍)) is the log-partition function.

Definition 6.2 does not restrict P(𝑊 |𝑍) for binary/categorical 𝑊 , and captures a wide

range of distributions, including the conditional Gaussian (see Appendix D.2.1 for

other examples). Definition 6.2 extends to marginal distributions where 𝑍 = ∅ and

𝜂(𝑍) is a constant function.

Example 6.1 (Continued). Suppose the probability of ordering a test (𝑂) depends

on age (𝐴) and disease (𝑌 ), such that P(𝑂 = 1|𝐴, 𝑌 ) = 𝜎(𝜂(𝐴, 𝑌 )), where 𝜎 is the

sigmoid, and 𝜂 is an arbitrary function. Here, Definition 6.2 is satisfied with 𝑊 = 𝑂,

𝑍 = (𝐴, 𝑌 ), and sufficient statistic 𝑇 (𝑂) = 𝑂.

We now state our main assumption, where we distinguish between the terms in the

joint distribution of P that shift, which we will need to model, and those that remain

fixed, which we do not.

Assumption 6.1 (Factorization into CEF distributions). Let W = {𝑊1, . . . ,𝑊𝑚} ⊆ V

be a “intervention set” of variables and let

P(V) =
∏︁

𝑊𝑖∈W

P(𝑊𝑖|𝑍𝑖)⏟  ⏞  
Conditionals that shift

∏︁
𝑉𝑗∈V∖W

P(𝑉𝑗|𝑈𝑗)⏟  ⏞  
Conditionals we do not model

(6.4)

be a factorization, where 𝑍𝑖, 𝑈𝑗, 𝑉𝑗 ⊆ V are possibly overlapping (or empty) sets of

variables, where P(𝑉𝑗 | ∅) := P(𝑉𝑗). For each 𝑊𝑖 we assume 𝑍𝑖 is known and P(𝑊𝑖|𝑍𝑖)

satisfies Definition 6.2.

If P(V) factorizes according to a DAG 𝒢, the factorization in Assumption 6.1 is

always satisfied by 𝑍𝑖 = PA𝒢(𝑊𝑖). While we assume data is generated according to
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Equation (6.4), we do not require knowledge of the full distribution, but only the

conditionals that shift. In Appendix D.2.2 we show that we can also consider shifts

that extend 𝑍𝑖 to include additional variables, subject to an acyclicity constraint. We

now define parametric perturbations and give the general form of the robustness sets

that we consider in this work, involving simultaneous perturbations to multiple 𝑊𝑖.

Definition 6.3 (Parameterized shift functions and 𝛿-perturbations). Let 𝑠(𝑍; 𝛿) : R𝑑𝑍 →

R𝑑𝑇 be a parameterized shift function with parameters 𝛿 ∈ Δ ⊆ R𝑑𝛿 which is twice-

differentiable with respect to 𝛿 and which satisfies 𝑠(𝑍; 0) = 0 for all 𝑍. For P(𝑊 |𝑍)

satisfying Equation (6.3), we refer to

P𝛿(𝑊 |𝑍) = 𝑔(𝑊 ) exp
(︀
𝜂𝛿(𝑍)

⊤𝑇 (𝑊 )− ℎ(𝜂𝛿(𝑍))
)︀

as a 𝛿-perturbation of P(𝑊 |𝑍) with shift function 𝑠(𝑍; 𝛿), where 𝜂𝛿(𝑍) := 𝜂(𝑍)+𝑠(𝑍; 𝛿).

Note that this differs from Equation (6.3) in that 𝜂(𝑍) is replaced by 𝜂𝛿(𝑍).

Example 6.1 (Continued). A model developer may be concerned about a uniform

change in testing rates across all types of patients. This can be modelled by choosing

𝑠(𝑍; 𝛿) = 𝛿, for 𝛿 ∈ R, an additive intervention on the log-odds scale. A separate

change in testing rates for sick and healthy patients could instead be modeled using

𝑠(𝑍; 𝛿) = 𝛿0(1 − 𝑌 ) + 𝛿1𝑌 , using 𝛿 ∈ R2. This reasoning extends readily to more

complex shifts (e.g., allowing for age-specific changes in testing rates, with a non-linear

dependence on age), as long as 𝑠(𝑍; 𝛿) remains a parametric function.

While the shift function 𝑠(𝑍; 𝛿) is parametric, 𝜂(𝑍) is unconstrained in Definitions 6.2

and 6.3. Note that this formulation includes multiplicative shifts 𝜂𝛿(𝑍) = (1 + 𝛿)𝜂(𝑍)

by letting 𝑠(𝑍; 𝛿) = 𝛿 · 𝜂(𝑍).

Definition 6.4 (CEF parameterized robustness set). For a distribution P and interven-

tion set W = {𝑊1, . . . ,𝑊𝑚} ⊆ V satisfying Assumption 6.1, let each P𝛿𝑖(𝑊𝑖|𝑍𝑖) be a
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𝛿𝑖-perturbation (Definition 6.3) of P(𝑊𝑖|𝑍𝑖). Then

P𝛿(V) =

(︃ ∏︁
𝑊𝑖∈W

P𝛿𝑖(𝑊𝑖|𝑍𝑖)

)︃⎛⎝ ∏︁
𝑉𝑗∈V∖W

P(𝑉𝑗|𝑈𝑗)

⎞⎠
is called a 𝛿-perturbation of P(V), and the robustness set 𝒫 consists of all P𝛿 for

𝛿 ∈ Δ1 × · · ·Δ𝑚.

To estimate the expected loss under P𝛿, we will typically1 need to estimate 𝜂(𝑍𝑖) for

each 𝑊𝑖 ∈W. However, we make no distributional assumptions on the remaining

variables V ∖W. This is useful in applications such as computer vision, where we do

not need to restrict the generative model of images given attributes (e.g., background,

camera type, etc), but can still model the expected loss under changes in the joint

distribution of those attributes.

Remark 4 (Causal Interpretation of Shifts). If available, causal knowledge helps identify

which factors in the joint distribution are subject to shifts (e.g., P(𝑂 | 𝑌,𝐴) in Exam-

ple 6.1), and which remain stable. It is worth noting, however, that our methodology

can be used to model any change in distribution that satisfies Assumption 6.1, includ-

ing choices of “non-causal” factorizations and shifting factors. For example, in the

context of Example 6.1, we could choose the factorization P(𝑌 )P(𝑂 | 𝑌 )P(𝐿,𝐴 | 𝑂, 𝑌 ),

and model a change only in the conditional P(𝑂 | 𝑌 ) while keeping other factors

unchanged. This shift is not interpretable as a change in causal mechanisms: The

shifted distribution would imply a change in the marginal distribution of age, which

should be unaffected by a real-world change in laboratory testing. Nonetheless, we can

still estimate a worst-case loss over such non-causal shifts in distribution. In short, our

machinery can model shifts in non-causal conditionals (for example because the causal

structure is unknown), though the resulting shifted distribution is not interpretable as

a plausible shift in the ground-truth data generating mechanism.

1As a special case, in Appendix D.3.2, we show the second-order approximation (Theorem 6.1) can
be estimated in the case of variance-scaled mean-shifts in a conditional Gaussian without estimation
of all of 𝜂(𝑍).
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6.3 Evaluation of the worst-case loss

For a fixed predictor and loss function, we can use data from P(V) to estimate the

expected loss E𝛿[ℓ] := E𝛿[ℓ(𝑓(𝑋), 𝑌 )] for a fixed 𝛿, and estimate the worst-case loss

over all 𝛿 of bounded magnitude. In Section 6.3.1, we show that P𝛿 shares support with

P, suggesting the use of reweighting estimators. However, these estimators can exhibit

high variance for shifts that produce large density ratios (see Appendix D.3.5 for an

example), and maximizing a reweighted objective over 𝛿 is generally a non-convex

problem. In Section 6.3.2 we derive an approximation to the expected loss under P𝛿,

yielding a tractable surrogate optimization problem under quadratic constraints such

as ‖𝛿‖2 ≤ 𝜆.

Remark 5. The methods here can be used with an arbitrary predictor 𝑓 and loss

function ℓ := ℓ(𝑓(𝑋), 𝑌 ). We do not even require access to the original predictor

𝑓 . Both methods here simply treat ℓ as a random variable in P, for which we have

samples from the training distribution.

6.3.1 Modelling shifted losses using reweighting

The shifts defined in Section 6.2 share common support, with the following density

ratio.

Proposition 6.1. For any P𝛿(V),P(V) that satisfy Definition 6.4, supp(P) = supp(P𝛿)

and the density ratio 𝑤𝛿 := P𝛿/P is given by

𝑤𝛿(V) = exp

(︂ 𝑚∑︁
𝑖=1

𝑠𝑖(𝑍𝑖; 𝛿𝑖)
⊤𝑇𝑖(𝑊𝑖)

)︂
exp

(︃
𝑚∑︁
𝑖=1

ℎ(𝜂𝑖(𝑍𝑖))− ℎ(𝜂(𝑍𝑖) + 𝑠𝑖(𝑍𝑖; 𝛿𝑖))

)︃
.

The proof can be found in Appendix D.7, along with all proofs for all other claims.

Example 6.1 (Continued). Suppose we perturb the probability of ordering a test 𝑂

given age 𝐴 and disease 𝑌 with shift function 𝑠(𝑌 ; 𝛿) = 𝛿0(1−𝑌 )+𝛿1𝑌 , independently

changing the conditional probability of testing for healthy and sick patients. Here, the

246



density ratio is given by

𝑤𝛿(𝑂,𝐴, 𝑌 ) = exp(𝑠(𝑌 ; 𝛿) ·𝑂)
1 + exp(𝜂(𝐴, 𝑌 ))

1 + exp(𝜂(𝐴, 𝑌 ) + 𝑠(𝑌 ; 𝛿))
. (6.5)

To model the loss E𝛿[ℓ] using data from P, we can consider an importance sampling

(IS) estimator (Horvitz and Thompson, 1952; Shimodaira, 2000), observing that

E𝛿[ℓ] = E[𝑤𝛿(V) · ℓ]. This requires estimation of the density ratio 𝑤𝛿(V), and (given a

sample {V𝑗}𝑛𝑗=1 from P) yields the estimator

E𝛿[ℓ] ≈ �̂�𝛿,IS :=
1

𝑛

𝑛∑︁
𝑗=1

�̂�𝛿(V
𝑗)ℓ(V𝑗). (6.6)

Equation (6.6) can have high variance when density ratios are large, and maximizing

this equation with respect to 𝛿 is a general non-convex optimization problem, which is

generally NP-hard to solve.

6.3.2 Approximating the shifted loss for exponential family models

We now propose an alternative approach for approximating the loss E𝛿[ℓ]. Recalling

that P𝛿=0 = P, we use a second-order Taylor expansion around the training distribution

E𝛿[ℓ] ≈ E[ℓ] + 𝛿⊤ SG1+1
2
𝛿⊤ SG2 𝛿, (6.7)

where E[ℓ] denotes the loss in the training distribution and SG1, SG2 are defined as

follows.

Definition 6.5 (Shift gradient and Hessian). For a parametric shift satisfying Defini-

tion 6.1 where 𝛿 ↦→ E𝛿[ℓ] is twice-differentiable, we denote the shift gradient SG1 and

shift Hessian SG2 as

SG1 := ∇𝛿E𝛿[ℓ]
⃒⃒
𝛿=0

and SG2 := ∇2
𝛿E𝛿[ℓ]

⃒⃒
𝛿=0

.
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Equation (6.7) is a local approximation of the loss, whose approximation error we

bound in Theorem 6.2, with smaller approximation error for smaller shifts.2 For

P𝛿 satisfying Definition 6.4, SG1 and SG2 can be computed as expectations in the

training distribution, without estimation of density ratios. Recall that the conditional

covariance is given by Cov(𝐴,𝐵|𝐶) := E[(𝐴− E[𝐴|𝐶])(𝐵 − E[𝐵|𝐶])|𝐶].

Theorem 6.1 (Shift gradients and Hessians as covariances). Assume that P𝛿,P sat-

isfy Definition 6.4, with intervened variables W = {𝑊1, . . . ,𝑊𝑚} and shift func-

tions 𝑠𝑖(𝑍𝑖; 𝛿𝑖), where 𝛿 = (𝛿1, . . . , 𝛿𝑚). Then the shift gradient is given by SG1 =

(SG1
1, . . . , SG

1
𝑚) ∈ R𝑑𝛿 where

SG1
𝑖 = E

[︂
𝐷⊤

𝑖,1Cov

(︂
ℓ, 𝑇𝑖(𝑊𝑖)

⃒⃒⃒⃒
𝑍𝑖

)︂]︂
,

and the shift Hessian is a matrix of size (𝑑𝛿 × 𝑑𝛿), where the (𝑖, 𝑗)th block of size

𝑑𝛿𝑖 × 𝑑𝛿𝑗 equals

{SG2}𝑖,𝑗 =

⎧⎪⎨⎪⎩E
[︁
𝐷⊤

𝑖,1Cov
(︁
ℓ, 𝜖𝑇𝑖|𝑍𝑖

𝜖⊤𝑇𝑖|𝑍𝑖
|𝑍𝑖

)︁
𝐷𝑖,1

]︁
− E

[︀
ℓ ·𝐷⊤

𝑖,2𝜖𝑇 |𝑍
]︀

𝑖 = 𝑗

Cov(ℓ, 𝐷⊤
𝑖,1𝜖𝑇𝑖|𝑍𝑖

𝜖⊤𝑇𝑗 |𝑍𝑗
𝐷𝑗,1) 𝑖 ̸= 𝑗,

where 𝐷𝑖,𝑘 := ∇𝑘
𝛿𝑖
𝑠𝑖(𝑍𝑖; 𝛿𝑖)|𝛿=0, is the gradient of the shift function for 𝑘 = 1, and

the Hessian for 𝑘 = 2. Here, 𝑇𝑖(𝑊𝑖) is the sufficient statistic of P(𝑊𝑖|𝑍𝑖) and

𝜖𝑇𝑖|𝑍𝑖
:= 𝑇𝑖(𝑊𝑖)− E[𝑇 (𝑊𝑖)|𝑍𝑖].

Theorem 6.1 handles arbitrary parametric shift functions in multiple variables, but for

simple shift functions in a single variable, the notation simplifies substantially, as we

show in Corollary 6.1.

Corollary 6.1 (Simple shift in a single variable). Assume the setup of Theorem 6.1,

restricted to a shift in a single variable 𝑊 , and that 𝑠(𝑍; 𝛿) = 𝛿. Then 𝐷1 = 1, 𝐷2 = 0,

2In Appendix D.3.3, we give an example of a linear-Gaussian generative model where this second-
order expansion is exact, corresponding to the setting of Anchor Regression (Rothenhäusler et al.,
2021).
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and

SG1 = E
[︂
Cov

(︂
ℓ, 𝑇 (𝑊 )

⃒⃒⃒⃒
𝑍

)︂]︂
and SG2 = E

[︂
Cov

(︂
ℓ, 𝜖𝑇 |𝑍𝜖

⊤
𝑇 |𝑍

⃒⃒⃒⃒
𝑍

)︂]︂
,

where 𝑇 (𝑊 ) is the sufficient statistic of 𝑊 and 𝜖𝑇 |𝑍 := 𝑇 (𝑊 )− E[𝑇 (𝑊 )|𝑍].

Example 6.1 (Continued). Suppose that age (𝐴) follows a normal distribution with

mean 𝜇 and variance 𝜎2, and consider a shift in the mean (without changing lab testing).

We can parameterize P(𝐴) as an exponential family with parameter 𝜂 = 𝜇/𝜎 and

sufficient statistic 𝑇 (𝐴) = 𝐴/𝜎. Here, 𝑠(𝛿) = 𝛿 implies a shift in the mean of 𝛿 standard

deviations 𝜂𝛿 = 𝜂+ 𝑠(𝛿) = (𝜇+ 𝜎𝛿)/𝜎, and we can write that SG1 = Cov (ℓ, 𝐴) /𝜎 and

SG2 = Cov (ℓ, (𝐴− E[𝐴])2) /𝜎2.

To estimate the shift gradient and Hessian from a sample from P, for each 𝑖 = 1, . . . , 𝑚

we fit models �̂�ℓ(𝑍𝑖) ≈ E[ℓ|𝑍𝑖] and �̂�𝑊𝑖
(𝑍𝑖) ≈ E[𝑇𝑖(𝑊𝑖)|𝑍𝑖] and compute residuals

on these predictions, which permits estimation of the gradient/Hessian as a sample

average of residuals. A detailed treatment is given in Appendix D.3.1. Using estimates

of the gradient and Hessian, we estimate the expected loss as

E𝛿[ℓ] ≈ �̂�𝛿,Taylor := Ê[ℓ] + 𝛿⊤ SĜ
1
+

1

2
𝛿⊤ SĜ

2
𝛿. (6.8)

Here, there are two sources of error: Finite-sample error, due to the estimates of

SG1, SG2, as well as approximation error. The latter is bounded by the norm of 𝛿

and a term that depends on the covariance between the loss and the deviations of the

sufficient statistic from its shifted mean.

Theorem 6.2. Assume that P𝛿,P satisfy the conditions of Theorem 6.1, with a shift in

a single variable 𝑊 , where 𝑠(𝑍; 𝛿) = 𝛿. Let 𝐸𝛿,Taylor be the population Taylor estimate

(Equation (6.7)) and let 𝜎(𝑀) denote the largest absolute value of the eigenvalues of a

matrix 𝑀 . Then⃒⃒⃒⃒
E𝛿[ℓ]− 𝐸𝛿,Taylor

⃒⃒⃒⃒
≤ 1

2
sup
𝑡∈[0,1]

𝜎

(︂
Cov𝑡·𝛿(ℓ, 𝜖𝑡·𝛿,𝑇 |𝑍𝜖

⊤
𝑡·𝛿,𝑇 |𝑍)− Cov(ℓ, 𝜖0,𝑇 |𝑍𝜖

⊤
0,𝑇 |𝑍)

)︂
· ‖𝛿‖2,
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where 𝑇 (𝑊 ) is the sufficient statistic of 𝑊 |𝑍 and 𝜖𝑡·𝛿,𝑇 |𝑍 = 𝑇 (𝑊 |𝑍)− E𝑡·𝛿[𝑇 (𝑊 |𝑍)].

To build intuition, in Appendix D.3.8 we give a scenario where this bound can be

simplified. In particular, we consider a “covariate shift” setting (Quiñonero-Candela

et al., 2008) where𝑋 is standard Gaussian, 𝑌 = 𝑓0(𝑋)+𝜖 with a noise term independent

of 𝑋 and we consider a shift 𝛿 in the mean of 𝑋. When evaluating a predictor 𝑓(𝑋)

with the loss ℓ being the squared error, the bound in Theorem 6.2 depends on how

the modelling error 𝑔(𝑋) = 𝑓0(𝑋)− 𝑓(𝑋) behaves over the domain. In particular, the

bound scales as the supremum (over 𝑡 ∈ [0, 1]) of
√︀
Var(𝑔(𝑋 + 𝑡 · 𝛿)2 − 𝑔(𝑋)2). As

a simple corollary, if our predictor is off by an additive constant factor, 𝑓 = 𝑓0 + 𝐶,

then the bound is zero, and the approximation is exact for any 𝛿. On the other hand,

if the squared modelling error 𝑔(𝑋)2 at one point 𝑋 tends to be a poor predictor of

the squared modelling error at another point 𝑋 + 𝑡 · 𝛿, then this variance will be large,

and the approximation will be loose.

In exchange for considering a second-order approximation of the loss, we gain two

benefits: Variance reduction and tractable optimization. First, the variance of �̂�𝛿,Taylor

is 𝑂(‖𝛿‖4) for large ‖𝛿‖, while the variance of �̂�𝛿,IS can be much larger: We give a simple

case in Appendix D.3.6 where Var(�̂�𝛿,Taylor) = 𝑂(𝛿4) while Var(�̂�𝛿,IS) = 𝑂(𝛿2 exp(𝛿2)).

Second, maximizing �̂�𝛿,Taylor over the set ‖𝛿‖ ≤ 𝜆 can be solved in polynomial time

by exploiting the quadratic structure, while maximizing �̂�𝛿,IS over the constraints is

generally hard, and may be infeasible in high dimensions.

6.3.3 Identifying worst-case parametric shifts

For 𝜆 > 0, we can locally approximate the worst-case loss over all distributions P𝛿

where ‖𝛿‖2 ≤ 𝜆 by finding the worst-case loss in the Taylor approximation

sup
‖𝛿‖2≤𝜆

E[ℓ] + 𝛿⊤ SG1+1
2
𝛿⊤ SG2 𝛿. (6.9)
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Since SG2 is generally not negative definite, the maximization objective is non-concave.

However, this particular problem is an instance of the ‘trust region problem’3 which is

well-studied in the optimization literature (Conn et al., 2000), and can be solved in

polynomial time by specialized algorithms (see Pólik and Terlaky (2007, Section 8.1) for

an example). This follows from the fact that strong duality holds, so that the optimal

solution 𝛿* can be characterized in terms of the Karush-Kuhn-Tucker conditions (Boyd

and Vandenberghe, 2004, Section 5.2). For this problem, we use the trsapp routine

from NEWUOA (Powell, 2006), as implemented in the python package trustregion.

Depending on the application and prior knowledge, one may choose constraint sets

that differ from ‖𝛿‖ ≤ 𝜆. In particular, the strong duality of Equation (6.9) also holds

when ‖𝛿‖2 ≤ 𝜆 is replaced by any single quadratic constraint 𝛿⊤𝐴𝛿+ 𝛿⊤𝑏 ≤ 𝜆, allowing

for e.g., larger shifts in some directions than in others.

6.4 Experiments

6.4.1 Illustrative example: Laboratory testing

𝑌 𝑂

𝐿

Figure 6-2

To build intuition, we illustrate our method in a simple generative

model, similar to Example 6.1, where lab tests are more likely to be

ordered (𝑂) for sick patients (𝑌 ), and lab values (𝐿) are predictive

of 𝑌 .

𝑌 ∼ Bern(0.5) 𝑂|𝑌 ∼ Bern(𝜎(𝛼 + 𝛽𝑌 )) 𝐿|(𝑌,𝑂 = 1) ∼ 𝒩 (𝜇𝑦, 1)

where 𝜇1 = 0.5, 𝜇0 = −0.5, and we initialize with 𝛼 = −1, 𝛽 = 2, so that P(𝑂 =

1|𝑌 = 0) ≈ 0.27 and P(𝑂 = 1|𝑌 = 1) ≈ 0.73, and the marginal probability of test

ordering is P(𝑂 = 1) = 0.5. When 𝑂 = 0, we set 𝐿 to a dummy value of 𝐿 = 0. The

underlying causal graph is given in Figure 6-2. The predictive model 𝑓(𝑂,𝐿) is trained

3Not to be confused with the ‘trust region method ’, which repeatedly solves the trust region
problem.
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Figure 6-3: The blue line gives the (unobserved) cross-entropy loss under parametric
shifts, plotted with respect to the parameter 𝛿0 (a) and the resulting change in the
marginal laboratory testing rate (b). We also provide the quadratic approximation
(orange line), estimated using validation data, and the predicted worst-case shift (red
star) for |𝛿0| < 2 (region in grey).

on data from P to predict 𝑌 using all available features. If lab tests are not available

(𝑂 = 0), this model predicts 𝑌 based on the observed likelihood of 𝑌 given 𝑂 = 0,

and otherwise uses a logistic regression model trained on cases where 𝑂 = 1 in the

training data.

Defining a shift function: P(𝑂|𝑌 ) is a conditional exponential family with 𝜂(𝑌 ) =

𝛼+ 𝛽𝑌 . We consider the shift function 𝑠(𝑌 ; 𝛿) = 𝛿0 + 𝛿1𝑌 , where 𝛿0 models an overall

change in testing rate, and 𝛿1 models an additional change in the likelihood of testing

sick (𝑌 = 1) patients.

Estimating the impact of shift using quadratic approximation: To start, we keep 𝛿1 = 0

fixed and vary only 𝛿0, which uniformly increases or decreases testing. In Figure 6-3,

we show the ground-truth cross-entropy loss of 𝑓(𝑂,𝐿) under perturbed distributions

P𝛿0 . We observe that the direction of the shift matters: In Figure 6-3, the model

performance slightly increases under a small increase in testing rates, but degrades if

testing increases too much; moreover, the loss under shift is generally asymmetric, as

a decrease hurts more than an increase in testing. In Figure 6-3a, we demonstrate

the use of the quadratic approximation described in Section 6.3.2. For illustration, we

consider a robustness set of 𝛿0 ∈ [−2, 2], and see that the predicted worst-case shift

coincides with the actual worst-case shift, and that the quadratic approximation is
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Eyeglasses Bald Mustache SmilingWearing Lipstick

Mouth Slightly Open Narrow Eyes

Figure 6-4: Causal graph over attributes in the synthetic CelebA dataset, where
lightning bolts indicate changes in mechanisms. All of these attributes are causal
parents of the image 𝑋 (not shown here), which is generated by a GAN conditioned
on these attributes.

accurate for smaller values of 𝛿.

In Appendix D.4, we allow both 𝛿0 and 𝛿1 to vary, and compare our approach to that

of worst-case (1− 𝛼) conditional subpopulation shifts (Subbaswamy et al., 2021). In

the context of this example, we demonstrate that for any 1− 𝛼 < 0.27, the worst-case

conditional subpopulation loss is achieved by having all healthy patients get tested, and

no sick patients get tested. We contrast this with an iterative approach to designing

constraints that is made possible by considering parametric shifts, where end-users

can restrict the degree to which the shift differs across sick and healthy populations.

6.4.2 Detecting sensitivity to non-causal correlations

A predictive model may pick up on various problematic dependencies in the data

that may not remain stable under dataset shift. To understand the impact of these

dependencies, a model user may wish to understand which changes in distribution pose

the greatest threats to model performance, and to measure the impact of these changes.

To illustrate this use-case, we make use of the CelebA dataset (Liu et al., 2015), which

contains images of faces and binary attributes (e.g., glasses, beard, etc.) encoding

several features whose correlations may be unstable (e.g., the relation between gender

and being bald). We consider the task of predicting gender (𝑌 ) from images of faces

(𝑋), and assess sensitivity to a shift in the distributions of attributes (W).4

4We do not endorse gender classification as an inherently worthwhile task. Nonetheless, gender
classification is commonly studied in the context of understanding the implicit biases of machine
learning models (Buolamwini and Gebru, 2018; Schwemmer et al., 2020), and we consider the task
with that context in mind.
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Setup: To obtain ground-truth shifts in distribution, we generate synthetic datasets

of faces using CausalGAN (Kocaoglu et al., 2018), trained on the CelebA data. We

simulate attributes following the causal graph in Figure 6-4, and then simulate images

from the GAN conditioned on those attributes. We draw a training sample from

this distribution P, and fit a gender classifier 𝑓(𝑋) using the image data alone, by

finetuning a pretrained ResNet50 classifier (Hu et al., 2018). Each attribute 𝑊𝑖 is

binary, so we consider shifts in the log-odds 𝜂𝑖(𝑍𝑖) of each attribute 𝑊𝑖 given parents

𝑍𝑖. Here, we use a maximally flexible shift function 𝑠𝑖(𝑍𝑖; 𝛿𝑖) =
∑︀

𝑧∈𝒵𝑖
𝛿𝑖,𝑧1 {𝑍𝑖 = 𝑧},

such that for 𝑍𝑖 ∈ {0, 1}𝑘 there are 2𝑘 parameters. Across all intervened variables,

𝛿 ∈ R31. Due to the synthetic nature of our setup, we can simulate from P𝛿(𝑋,W, 𝑌 )

to evaluate the ground-truth impact of this shift, simulating first from the shifted

attribute distribution, and then simulating images from the GAN conditional on those

attributes. We use the 0/1 loss ℓ = 1 {𝑓(𝑋) ̸= 𝑌 }, and constrain 𝛿 by ‖𝛿‖2 ≤ 𝜆 = 2.

Comparing importance sampling and Taylor across multiple simulations: We simulate

𝐾 = 100 validation sets from P, in each estimating the worst-case shifts 𝛿Taylor (via

the approach in Section 6.3.3) and 𝛿IS, where the latter corresponds to minimizing

�̂�𝛿,IS using a standard non-convex solver from the scipy library (Virtanen et al.,

2020). We simulate ground truth data from P𝛿IS and P𝛿Taylor
, to compare the two shifts.

First, we demonstrate that the Taylor approach finds more impactful shifts, when

searching over the space of small, bounded shifts considered here. In Table 6.1b, we

compare the average drop in accuracy using the Taylor shifts (3.8%) and the IS shifts

(2.2%). In Figure 6-5b we plot the differences in test accuracy E𝛿Taylor
[1 {𝑓(𝑋) = 𝑌 }]−

E𝛿IS[1 {𝑓(𝑋) = 𝑌 }], where the Taylor approach finds a more impactful shift in 96%

of cases. Second, the Taylor approach has an average run-time of 0.01𝑠, versus 2.14𝑠

for the IS approach. Third, when only used to evaluate the shift 𝛿Taylor, the IS

estimator is comparable to the Taylor estimator, with a near-identical average bias

(shown in Table 6.1b) and RMSE (0.0191 and 0.0192 respectively). Finally, however,

in Table 6.1b we observe that �̂�𝛿IS,IS is strongly biased in predicting E𝛿IS, yielding

a mean absolute prediction error (MAPE) of 0.069 (not shown in the table). This

can be contrasted with a MAPE of 0.015 when using �̂�𝛿Taylor,Taylor to predict E𝛿Taylor
.
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Table 6.1: (a) Top 5 components (by magnitude) of the example shift vector 𝛿 ∈ R31

where P and P𝛿 denote conditional probabilities. The full example shift vector can be
found in Appendix D.5.2. (b) Taylor and IS estimates vs. true accuracy for the 𝛿Taylor
found by the Taylor approach, and IS estimate vs. true accuracy for the 𝛿IS found by
the IS approach. Averages are taken over 100 simulations.

Conditional 𝛿𝑖 P P𝛿

Bald | Female, Old 0.899 0.047 0.109
Bald | Male, Young -0.800 0.378 0.214
Bald | Male, Old -0.680 0.622 0.455

Wearing Lipstick | Female, Young -0.618 0.924 0.868
Wearing Lipstick | Female, Old -0.543 0.953 0.921

(a)

Metric Example 𝛿 Avg.

Original acc. (E[1{𝑓(𝑋) = 𝑌 }]) 0.912

Acc. under Taylor shift (E𝛿Taylor
[1{𝑓(𝑋) = 𝑌 }]) 0.874 0.874

IS est. of acc. under Taylor shift (�̂�𝛿Taylor,IS) 0.829 0.863

Taylor est. of acc. under Taylor shift (�̂�𝛿Taylor,Taylor) 0.844 0.863

Acc. under IS shift (E𝛿IS [1{𝑓(𝑋) = 𝑌 }]) 0.889

IS est. of acc. under IS shift (�̂�𝛿IS,IS) 0.821

(b)

88.0% 90.0% 92.0% 94.0%

Shift distribution acc.

Acc. at 𝛿Taylor
Training acc.

Random shift acc.
Higher than E𝛿Taylor

(a)

−3.0% −2.0% −1.0% 0.0% 1.0%

Difference in Shifted acc. (E𝛿Taylor − E𝛿IS )

Lower Acc.
Taylor
IS

(b)

Figure 6-5: (a) Model accuracy at randomly drawn shifts. (b) Difference in accuracy
in the worst-case shifts identified by Taylor and importance sampling approaches. The
Taylor method identifies a more adversarial shift than importance sampling in 96% of
simulations (green).

This may suggest that optimizing the IS objective is prone to “overfitting”, choosing a

sub-optimal 𝛿 from a region of the search space that has high variance. Here, where

𝜆 = 2, the drop in accuracy is relatively mild for the shifts found by both approaches.

In Appendix D.5.4 we show that larger values of 𝜆 correspond to more substantial

drops in accuracy (e.g., an average drop of 23% for 𝜆 = 8 using the Taylor approach).
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Examining a single shift: To illustrate the type of shift found by our approach, we

consider the 𝛿Taylor (over the 𝐾 runs) which yields the P𝛿 with median test accuracy.

We display the largest components of that 𝛿 in Table 6.1a. Among others, this shift

entails a 5% increase in the probability of an older woman being bald, and a 5%

decrease in the probability of a young woman wearing lipstick. This suggests that

the learned classifier 𝑓 relies on these associations in the images for prediction. We

validate that this shift leads to a decrease in accuracy of around 3.8%, using simulated

data from P𝛿. To validate that this drop in accuracy is a non-trivial occurrence, we

simulate 𝐾 = 400 random shifts 𝛿𝑘 where ‖𝛿𝑘‖ = 𝜆 and evaluate the model accuracy

in P𝛿𝑘 (Figure 6-5a). As expected, the chosen 𝛿 yields a lower accuracy (red line) than

all of the random shifts.

6.5 Conclusion

We argue for considering parametric shifts in distribution, to evaluate model perfor-

mance under a set of changes that are interpretable and controllable. For parametric

shifts in conditional exponential family distributions, we derive a local second-order

approximation to the loss under shift. This approximation enables the use of efficient

optimization algorithms (to find the worst-case shift), and empirically provides realistic

estimates of the resulting loss. In a computer vision task, this approach finds more

impactful shifts (in far less time) than optimizing a reweighted objective, and the

estimates of shifted accuracy under the chosen shift are substantially more reliable.

Of course, our method is not without limitations. Our definition of parametric

shifts and resulting approximation relies on the relevant mechanisms P(𝑊 |𝑍) being

a conditional exponential family, and that the relevant variables are observed. As

illustrated in our experiments, this can be used to model changes in the causal

relationships between attributes of an image, but does not immediately extend to

modelling changes in the distribution of images given a fixed set of attributes. As

with any method that provides worst-case evaluation, there is potential for misuse and
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false confidence: If the specified shifts fail to capture important real-world changes,

the resulting worst-case loss may be overly optimistic and misleading. Even if used

correctly, our approach examines a narrow measure of model performance, and a

small worst-case error should not be used to claim that a model is free of problematic

behavior. For example, implicit dependence on certain attributes (e.g., race in medical

imaging (Banerjee et al., 2021)) may be problematic based on ethical grounds, even

if it does not lead to major issues with predictive performance under small shifts in

distribution.
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Chapter 7

Auditing and Prompt Design for Large

Language-Image Models

7.1 Background and Motivation

CLIP (Contrastive Language-Image Pre-training) (Radford et al., 2021) is a self-

supervised model of image-text pairs, which has demonstrated remarkable zero-shot

performance on a variety of computer vision benchmarks. For instance, it outperforms

a fully supervised linear classifier (fit on ResNet-50 features) on ImageNet. To perform

zero-shot classification, CLIP performs matching between a set of fixed prompts (short

strings of text), and a given image. To perform zero-shot classification, it typically

suffices to use prompts of the form “a photo of a label.” (one for each label in the

dataset), and choose the prompt with the highest similarity to the image. We refer to

the selection of this set of strings as the problem of “prompt design”.

CLIP also appears to generalize well across so-called “natural distribution shifts”

represented by a variety of ImageNet-like datasets collected from diverse sources (see

Section 3.3 of Radford et al. (2021)). In particular, zero-shot CLIP has much higher

robustness to shift than other models, and this robustness decreases markedly for a

linear classifier, built on CLIP features, which is trained in a fully supervised fashion
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on ImageNet. The authors ask

. . . is training or adapting to the ImageNet dataset distribution the cause

of the observed robustness gap? Intuitively, a zero-shot model should not be

able to exploit spurious correlations or patterns that hold only on a specific

distribution, since it is not trained on that distribution.

In this chapter, we further probe the robustness of CLIP to structured shifts in

distribution, and explore the impact of prompt design on the robustness of the

resulting zero-shot classifier. We do so to illustrate the application of the approach

given in Chapter 6 for probing the robustness of models to structured shifts in

distribution.

7.2 Defining a set of bounded, structured shifts

In many computer vision tasks, meta-data is available (or is able to be inferred) for

images. For instance, the CelebA dataset (Liu et al., 2015) contains 40 attributes (e.g.,

gender, hair color, makeup worn, etc) for each image, one of which is typically taken

as the label. The availability of meta-data allows us to model how the performance of

a predictive model changes under structured changes in the data distribution. Here,

the goal is to use images 𝑋 to classify a label 𝑌 , where other image attributes 𝑍 are

available during training.

A plausible change in this case might involve changes in the joint distribution 𝑃 (𝑌, 𝑍)

of the label 𝑌 and attributes 𝑍, while the distribution of images 𝑋 conditioned on

the label / attributes 𝑃 (𝑋 | 𝑌, 𝑍) remains fixed. We discuss the plausibility of this

assumption later on from the viewpoint of changes in causal mechanisms, and cases

where this assumption may be violated. For now, we note that we do not expect

models to be robust to arbitrary changes in the joint label/attribute distribution

𝑃 (𝑌, 𝑍), but instead seek to understand how models perform under bounded and

structured shifts in this joint distribution.
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7.2.1 Defining a set of structured shifts

In this section, we consider shifts of the following form,

𝑃𝛿(𝑍, 𝑌,𝑋) = 𝑃𝛿(𝑍, 𝑌 )𝑃 (𝑋 | 𝑍, 𝑌 ), (7.1)

where we use red to indicate portions of the factorization which change, and we use

𝑃 to denote the probability mass function for discrete variables, and the probability

density function for continuous variables. Assuming that all attributes (including the

label 𝑌 ) are binary, we denote set of all attributes by

𝐴 := (𝑌, 𝑍), (7.2)

we consider a structured shift in the distribution of 𝑃 (𝐴), which we further factorize

as follows, without assuming any conditional independences, and where 𝐴1:𝑖−1 :=

(𝐴1, . . . , 𝐴𝑖−1), and where we adopt the convention that 𝐴1:0 = ∅

𝑃𝛿(𝐴) =

𝑑𝐴∏︁
𝑖=1

𝑃𝛿(𝐴𝑖 | 𝐴1:𝑖−1). (7.3)

For each conditional distribution 𝑃 (𝐴𝑖 | 𝐴1:𝑖), we define a set of possible conditional

distributions indexed by a parameter 𝛿 ∈ R|𝐴|, where

𝑃𝛿(𝐴𝑖 = 1 | 𝐴1:𝑖) = 𝜎(𝜂𝑖(𝐴1:𝑖) + 𝛿𝑖). (7.4)

where 𝜂𝑖(𝐴1:𝑖−1) denotes the conditional log-odds log(𝑝/(1− 𝑝)) for 𝑝 := 𝑃 (𝐴𝑖 = 1 |

𝐴1:𝑖−1). This in turn defines a set of joint distributions

𝑃𝛿(𝐴,𝑋) = 𝑃𝛿(𝐴)𝑃 (𝑋 | 𝐴) (7.5)

where 𝑃𝛿(𝐴) is equal to the product of the shifted distributions. For a fixed predictive

model, we then seek to estimate the worst-case zero-one loss under a set of distributions
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𝑌𝑍𝑘
. . .𝑍1 𝑍𝑘+1 . . . 𝑍𝐾

𝑋

Figure 7-1: An image 𝑋 is a function of binary attributes 𝑍 and label 𝑌 . Some
components of 𝑍 cause 𝑌 , while others are caused by 𝑌 , and all of their distributions
are subject to change.

defined by 𝛿, recalling that 𝑌 is just one of the attributes

sup
‖𝛿‖2≤𝜆

E𝑋,𝑌∼𝑃𝛿
[𝑓(𝑋) ̸= 𝑌 ]. (7.6)

Given an ordering over attributes 𝐴, each dimension of 𝛿 corresponds to a “uniform”

shift in the probability of observing each attribute1, given the attributes which

come before it. This factorization is reflected in the directed acyclic graph (DAG)

given in Figure 7-1, which we note imposes no statistical restrictions on the original

distribution, as it implies no conditional independences between variables.

While our approach can handle more complex shifts (i.e., replacing 𝛿𝑖 with any

parametric function 𝑠(𝐴1:𝑖; 𝛿𝑖)), we choose this parametric form of shift because it

has a straightforward interpretation: These shifts capture a “monotonic” change in

each attribute that otherwise preserves existing correlations. On the appropriate scale,

the tendency of every person to (for example) have blond hair decreases by the same

amount. However, women are still more likely to have blond hair then men, and so on.

7.2.2 When do these shifts reflect changes in causal mechanisms?

If the DAG in Figure 7-1 reflects the causal data-generating process, then the changes

in distribution we describe can be considered changes in causal mechanisms. We

1More precisely, an additive change in the conditional log-odds
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Δ

𝐴′ 𝑆

𝑋

(a)

𝐶 Δ

𝐴′ 𝑆

𝑋

(b)

Figure 7-2: 𝑆 denotes “smiling”, and 𝐴′ := (𝑌, 𝑍) ∖ 𝑆 denotes all other attributes,
including the label. (a) In this graph, a change in the causal mechanisms of 𝑆 is
reflected in a change in 𝑃 (𝑆 | 𝐴′), but 𝑃 (𝑋 | 𝐴′, 𝑆) is unchanged. (b) In this graph,
a change in the same causal mechanism (of 𝑆) results in a change in 𝑃 (𝑋 | 𝐴′, 𝑆).
Here, 𝐶 is a confounder denoting context (e.g., “on the red carpet”). Here, a change
in the causal mechanism of smiling implies a change in the conditional distribution of
images given all attributes 𝑃 (𝑋 | 𝐴′, 𝑆).

view this causal viewpoint as useful primarily in determining how to determine an

appropriate factorization from an interpretability standpoint. For instance, consider

the attributes of “Young/Old” and “Has Grey Hair”. Intuitively, we might expect

a change in age to be reflected by a change in hair color, and we might similarly

expect that hair color could change without a corresponding change in age (e.g., due

to changes in personal presentation like a change in the use of hair-coloring products).

From a causal perspective, hair color is “downstream” of age, where an intervention to

one’s age could cause a change in hair color, but not vice-versa.

However, the DAG in Figure 7-1 encodes more assumptions than simply the correct

causal ordering of variables: it assumes a lack of unobserved variables, which has

implications for the impact of changes in causal mechanisms. For instance, the structure

of the graph implies that soft interventions on individual attributes would not result

in a change to the distribution of images given attributes 𝑃 (𝑋 | 𝐴). In Figure 7-2 we

illustrate that this invariance would not necessarily hold under other causal structures.

In Figure 7-2a, we consider a shift in the causal mechanism of Smiling (𝑆), and

suppose that Smiling is not a causal parent of any other attribute. Let 𝐴′ denote all

other attributes: If these are equal to the causal parents of 𝑆 in the underlying causal
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graph, then a shift in causal mechanisms would correspond to an isolated change in

𝑃 (𝑆 | 𝐴′), without impacting any other observed conditional distribution. In this

sense, we can interpret a change in 𝑃 (𝑆 | 𝐴′) alone as a change in distribution arising

from manipulation of this causal mechanism.

In Figure 7-2b we consider an alternative causal data-generating process, where this

invariance of 𝑃 (𝑋 | 𝐴) does not hold. Considering the nature of the CelebA dataset

(photos of celebrities), we might imagine that some confounders exist. For instance,

consider a latent variable for the “context” in which a photo was taken, e.g., “at a

red-carpet screening”. If this context variable has a direct effect on the image 𝑋, as

well as the attribute for smiling 𝑆, then a change in the causal mechanism of smiling

implies a non-isolated change in both 𝑃 (𝑆 | 𝐴′) and the conditional distribution of

images given attributes 𝑃 (𝑋 | 𝐴′, 𝑆).

This can be formalized by placing a new node Δ on the graph, which captures a

change in mechanisms, and observing that 𝑋 ̸⊥⊥ Δ | 𝐴, 𝑆, though the back-door path

𝑋 ← 𝐶 → 𝑆 ← Δ, where 𝑆 serves as a collider. Here we consider some informal

intuition for why this occurs: Consider two interventions on 𝑆, and consider the

distribution of images given 𝑆 = 1, 𝐴′ = 𝑎. Suppose the first intervention corresponds

to celebrities becoming more likely to smile at a red-carpet event, all else being equal

(e.g., for all values of 𝐴′). In the second, celebrities are less likely to smile at a

red-carpet event. Under the first intervention, knowing that a celebrity is smiling

increases the posterior probability of a red-carpet event, which is then reflected in the

distribution of images. Under the second intervention, this pattern is reversed, and

knowing that a celebrity is smiling decreases the posterior probability of a red-carpet

event. Here, we note that the problem lies in the fact that the observed attributes

may not block the path from 𝐶 to 𝑋.

We discuss the challenge of causal interpretation further in Section 7.5.1, but for now

we utilize the parameterization of shift discussed above.
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7.3 Comparing zero-shot CLIP against a fine-tuned model

In this section, we begin by probing the robustness of zero-shot CLIP versus a fine-

tuned ResNet-50 model. In this section, we use the same synthetic gender classification

task as in Section 6.4 where we have ground truth information allowing us to simulate

performance under different shifts. For the purpose of this section, we use the same

factorization of shift discussed in Section 6.4.

In the following, we use a publicly-available version of the CLIP model (Radford et al.,

2021).2 We first consider a basic prompt for binary classification of “Gender”, using

the strings (i) “a photo of a man”, and (ii) “a photo of a woman”, where the zero-shot

CLIP model corresponds to picking the string (of these two options) whose embedding

is most similar to the image. Following the same experimental setup as in Section 6.4,

we repeat the following procedure 10 times:

(i) Generate a synthetic “validation” set of 1000 images, sampled from a fixed

distribution 𝑃 (𝑋, 𝑌, 𝑍), and evaluate the performance of zero-shot CLIP.

(ii) Using the factorization of 𝑃 (𝑌, 𝑍) considered in Section 6.4, specify a flexible

set of parametric perturbations to each factor3, and solve for the worst-case shift

in a bounded set of perturbations.

(iii) Validate the predicted drop in performance by simulating new data under the

chosen shift.

The main results are given in Tables 7.1 and 7.2. In Table 7.1 we compare an illustrative

worst-case shift found for the zero-shot CLIP model, as well as the illustrative shift

given in Section 6.4 for a fine-tuned ResNet-50 model, trained on a separate training

dataset also generated from this simulator. In Table 7.2, we give the training accuracy

of each model, along with the average predicted (and actual) drop in performance

under shift. From this we make a few observations:

2We use the openai/clip-vit-base-patch32 model available at https://huggingface.co/
3Note that in the generative model of Section 6.4, 𝑃 (𝑌 ) does not change, while 𝑃 (𝑍 | 𝑌 ) changes.

We follow the same set of shifts considered in that section.
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Table 7.1: Top 5 components of 𝛿 ∈ R31 yielding median drop in performance.

(a) Zero-Shot CLIP

Conditional 𝛿𝑖 P P𝛿

Mustache | Female, Old 1.238 0.076 0.221
Bald | Female, Old 0.972 0.047 0.116
Eyeglasses | Young 0.488 0.401 0.522
Bald | Male, Young -0.451 0.378 0.279
Eyeglasses | Old -0.430 0.500 0.394

(b) Fine-tuned ResNet-50

Conditional 𝛿𝑖 P P𝛿

Bald | Female, Old 0.899 0.047 0.109
Bald | Male, Young -0.800 0.378 0.214
Bald | Male, Old -0.680 0.622 0.455
Lipstick | Female, Young -0.618 0.924 0.868
Lipstick | Female, Old -0.543 0.953 0.921

Table 7.2: Impact of the example shift, as well as average changes in accuracy over
multiple simulations.

(a) Zero-Shot CLIP

Example Avg.

Acc. pre-shift 0.804
Acc. post-shift (Taylor) 0.757 0.757

IS estimate of Taylor Shift 0.780 0.738
Taylor estimate of Taylor Shift 0.762 0.743

(b) Fine-tuned ResNet-50

Example Avg.

Acc. pre-shift 0.912
Acc. post-shift (Taylor) 0.874 0.874

IS estimate of Taylor Shift 0.829 0.863
Taylor estimate of Taylor Shift 0.844 0.863

Zero-Shot CLIP has a similar robustness gap to the fine-tuned model : In both cases,

model performance drops by around 4% between the training distribution and the

shifted distribution. The lower in-distribution performance of zero-shot CLIP does

not correlate, in this case, with any measurable difference in robustness.

Zero-Shot CLIP is sensitive to different “directions” of shift : In the synthetic distri-

bution of attributes that make up the training distribution in Section 6.4, there is

a strong correlation between gender and wearing lipstick, which is reflected in the

shifts that the fine-tuned ResNet-50 model is sensitive to. Zero-shot CLIP shares

some common sensitivities to shift (e.g., in the distribution of baldness given age and

gender), but the worst-case shift does not appear to be in a direction that emphasizes

changes in lipstick wearing.

Conclusions: Based on this cursory evaluation, the zero-shot CLIP model (and prompt)

used here does not immediately appear to be more robust than a fine-tuned model

in this particular setting. In the next section we consider how robustness might be

improved by using a different set of prompts.
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7.4 Understanding the impact of prompt design on the

robustness of zero-shot CLIP

In this section, we consider evaluation of different zero-shot CLIP models on the

original CelebA dataset,4 using the task of classifying a particular binary attribute

(Blond Hair, in this section). Similar to the previous section, we use a publicly-available

version of the CLIP model (Radford et al., 2021). We first consider a basic prompt for

binary classification of “Blond Hair”, using the strings (i) “a photo of a person”, and

(ii) “a photo of a person with blond hair”.

We first allow for shifts in the causal mechanisms of all attributes, including the

label, as described in Section 7.2. When evaluating the original zero-shot CLIP model

using a simple prompt, we find simple shifts in distribution (corresponding primarily

to interventions on gender, age, and hair color) that lead to substantial increases

in classification error from 22% to 39%, with the latter estimated via importance

sampling on the validation set.

We then investigate the use of different prompts (e.g., those that explicitly attempt to

disentangle age and gender from hair color), which demonstrate an improvement both

on in-distribution performance, and under the particular shift found for the original

prompt. However, we find that the worst-case error of these alternative prompts is

not generally improved: They are merely susceptible to different directions of shift.

We then demonstrate that the class of shifts matters. When we restrict to shifts

only in selected attributes, leaving the marginal distribution of the label unchanged,

for instance, we find that these prompts exhibit more robust performance than the

original prompt. Overall, we find that looking at the chosen worst-case shift can give

some insight into the vulnerabilities of specific models, and the robustness of different

prompts depends on the type of shift that we allow.

4As opposed to the synthetic dataset used in the previous section.
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Figure 7-3: Candidate worst-case 𝛿 found for the original prompt in the Blond Hair
classification task, where attributes are given in the order used to generate shifts.
In Table E.1, we give the precise values, as well as the estimated (via importance
sampling) marginal proportions of each attribute in the shifted distribution.

7.4.1 Finding a worst-case shift

We use the approach we developed in Chapter 6 to find a worst-case shift using the

training data, constraining ‖𝛿‖ ≤ 6, and use importance sampling on the validation

set to evaluate the shift. Further details of how we find and evaluate the shift are

given in Appendix E.1.

For the original prompt, the worst-case shift involves (among other things) a substantial

reduction in the prevalence of men, young persons, and individuals with blond hair.

The full shift (in terms of 𝛿) is given in Figure 7-3 and Table E.1, where attributes

are ordered in the same way that we construct the shifts. In Table E.1 we also show

the resulting (estimated) changes in prevalence for each attribute, which builds some

useful additional intuition: As part of a general increase in the prevalence of women,

there is also a dramatic decrease in facial hair of all kinds, an increase (from 15% to

40%) in the prevalence of bangs (a hair style), and an increase in lipstick and heavy

makeup.
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7.4.2 Further interpreting the chosen shift

For each conditional distribution, the shift shown in Figure 7-3 is simple to describe

on a technical level, e.g., there is a uniform decrease in the log-odds of having blond

hair, given all the preceding variables. However, this shift can still feel difficult to

interpret, because the shift occurs in multiple conditional distributions, and there are

downstream impacts of each change (e.g., a change in proportion of genders implies

other changes in the proportion of lipstick, etc). With that in mind, we briefly discuss

a few other ways of interpreting the chosen shift.

Highlighting differences via illustrative images In Figure 7-4, we adopt a simple

approach to visualizing the new distribution over images, as well as the shift itself, in

terms of examples. In Figure 7-4a, we show nine randomly selected images chosen

uniformly from the original validation set, and in Figure 7-4b we show nine randomly

selected images where we sample in proportion to the importance weights. In Figures 7-

4c and 7-4d, we visualize the change by comparing the most down-weighted images

(smallest importance weights) with the most up-weighted images (largest importance

weights). This primarily illustrates the shift away from young men with blond hair,

towards older women without blond hair.

Examining marginal and lower-order changes In an ideal world, we would have

simple explanations or descriptions of the shifts we find. Even when presenting this

particular shift, one is tempted to reach for a simple description like “more women

and less blond hair”, even though the shifts we consider are a bit more complex.

Here, we briefly discuss how we might describe shifts in a post-doc way. Notably, this

is still non-trivial, even when (a) we have a set of known concepts, and (b) we know

the shift only occurs with respect to these concepts. Even if we had a good way of

extracting many concepts from images (e.g., using nodes in a neural network that

correspond to specific concepts (Bau et al., 2017)), we would have a similar challenge.

Our general approach is to look at lower-dimensional projections of the change, i.e.,
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(a) Uniform Samples (Original
Distribution)

(b) Weighted Samples (Shifted
Distribution)

(c) Most Down-Weighted Samples (d) Most Up-Weighted Samples

Figure 7-4

looking at changes in the prevalence of subgroups defined by one or two variables.

This approach is inspired by prior work that studies a similar problem using CelebA

(describing hard examples, rather than a new distribution), and which handles the

complexity problem implicitly by only considering “simple” low-order descriptions. For

instance, Jain et al. (2022) uses CLIP embeddings to find captions (from a pre-specified

list) that are the closest match to a set of difficult examples. The resulting descriptions

are compellingly simple (e.g., “a photo of a young woman who has an oval face”) but

this is by construction: All of the captions are single-attribute captions of the form “a

photo of a <adjective> <gender> who has <attribute>”.

Here we give two examples of how we might do low-dimensional projections, though

one might argue that it is easier to understand the shift in the original form that was

given. In particular, the original shift is more parsimonious, with four major changes

(in gender, age, pointy noses, and blond hair), while looking at the post-doc differences
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Figure 7-5: Similar to Figure 7-3, except that we visualize using the difference in
the marginal proportion of each binary feature under the new distribution, estimated
via importance sampling. We can see, for instance, a large increase in makeup and
lipstick, likely as a downstream result of fewer men. In Table E.1, we give the precise
values.

just highlights many of the downstream impacts of those changes.

Examining marginal changes: One approach is to simply look at differences in the

marginal proportion of each attribute. In Figure 7-5 and Table E.1 we show the

resulting (estimated) changes in prevalence for each attribute, which demonstrates

several down-stream effects of the increase in the prevalence of women, including a

decrease in facial hair of all kinds, an increase (from 15% to 40%) in the prevalence of

bangs (a hair style), and an increase in lipstick and heavy makeup.

Finding low-order interactions with large changes: In Table 7.3, we look at all pairs

of binary variables, filtering to those subgroups that have a prevalence of at least 5%

in the original distribution, and pull out the subgroups that have the largest absolute

increase or decrease in prevalence. As we can observe, most of these reflect the broader

increase in the proportion of women, people with pointy noses, and people without

blond hair.
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Table 7.3: Changes in prevalence when examining subgroups defined by two binary
variables. Loss gives the validation loss on each subgroup.

(a) Subgroups with the largest decrease in prevalence.

Var 1 Var 2 Pre Post Diff Loss

Pointy Nose (No) Bangs (No) 0.612 0.173 -0.439 0.193
Pointy Nose (No) Pale Skin (No) 0.683 0.250 -0.434 0.201
Rosy Cheeks (No) Pointy Nose (No) 0.686 0.271 -0.415 0.204
Male (Yes) Heavy Makeup (No) 0.425 0.016 -0.409 0.159
Rosy Cheeks (No) Male (Yes) 0.424 0.016 -0.408 0.160

(b) Subgroups with the largest increase in prevalence.

Var 1 Var 2 Pre Post Diff Loss

Heavy Makeup (Yes) Blond Hair (No) 0.284 0.742 0.458 0.341
Pointy Nose (Yes) Blond Hair (No) 0.221 0.694 0.473 0.311
Pointy Nose (Yes) Male (No) 0.217 0.697 0.480 0.288
Wearing Lipstick (Yes) Blond Hair (No) 0.325 0.818 0.492 0.339
Male (No) Blond Hair (No) 0.430 0.971 0.541 0.325

7.4.3 Evaluation of alternative prompts

Evaluation of shifted performance and prompt tuning: Based on the discovered shift,

we consider alternative prompts, designed to help the model disentangle blond hair

from some of the relevant shifted attributes, focusing on age and gender in particular.

To this end, we consider two alternative “multi-class”prompts: (i) four strings mapping

to two classes: “a photo of a {man/woman}”, and “a photo of a {man/woman} with

blond hair”, and (ii) eight strings mapping to two classes: “a photo of a {younger/older}

{man / woman}” and “a photo of a {younger/older} {man / woman} with blond hair”.

We refer to these prompts as the multi-class (gender) and multi-class (gender/age)

prompts, respectively.

We observe that while the multi-class (gender/age) prompt improves performance on

some distributions, the estimated worst-case loss is similar. In Figure 7-6, we compare

the loss of each prompt, both on the validation dataset and on the worst-case shifted

distributions for each prompt.5 The multi-class (gender/age) prompt yields better

5Reported performance on all shifted distributions is estimated via importance sampling on the
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Unshifted Dist. Worst-Case
Original

Worst-Case
MC (Gender)

Worst-Case
MC (Gender/Age)

Distribution

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0/
1 

Lo
ss

Classifier
Original Prompt
MC (Gender) Prompt
MC (Gender/Age) Prompt

(a)

Prompt

Distribution Original MC (G) MC (G/A)

Unshifted Dist. 0.2206 0.1742 0.1606
Worst-Case [Orig.] 0.3983 0.3253 0.2369
Worst-Case [MC (G)] 0.4116 0.3516 0.2347
Worst-Case [MC (G/A)] 0.1126 0.1879 0.3898

(b)

Figure 7-6: Comparison of the average loss of each zero-shot CLIP model on the
validation dataset, and the estimated loss on the worst-case shift found for each prompt.
The worst-case shifts for the original prompt and the MC (Gender/Age) prompt are
shown in Figure 7-7. (a) Uncertainty estimates are 95% confidence intervals derived
via bootstrapping the validation dataset, with the estimated importance weights fixed.
(b) Estimates using the entire validation set.

performance than the original prompt both on the validation dataset, and under the

particular shift which maximizes the loss of the original prompt (Worst-Case Original).

However, if we consider a worst-case shift for the multi-class (gender/age) prompt

itself (Worst-Case MC (Gender/Age)), the estimated worst-case loss is similar. A

similar pattern occurs for the multi-class (gender) prompt, whose worst-case loss does

not appear to significantly differ from that of the original prompt.

To build intuition for the differences in model sensitivity, we can also compare the

estimated worst-case shifts for the original and multi-class (gender/age) prompts. This

is shown in Figure 7-7, where we observe that the major difference is in the prevalence

of blond hair: The worst-case shift for the original prompt involves a substantial

decrease in blond hair, while the worst-case shift for the multi-class (gender/age)

prompt involves a substantial increase in blond hair.

validation dataset.
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Figure 7-7: Comparison between the 𝛿 found for the original prompt, and for the
multi-class prompt including gender and age.

Unshifted Dist. Worst-Case
Original

Worst-Case
MC (Gender)

Worst-Case
MC (Gender/Age)

Distribution

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0/
1 

Lo
ss

Classifier
Original Prompt
MC (Gender) Prompt
MC (Gender/Age) Prompt

(a)

Prompt

Distribution Original MC (G) MC (G/A)

Unshifted Dist. 0.2206 0.1742 0.1606
Worst-Case [Orig.] 0.2732 0.2440 0.2329
Worst-Case [MC (G)] 0.2885 0.2666 0.2526
Worst-Case [MC (G/A)] 0.2910 0.2747 0.2745

(b)

Figure 7-8: Blond Hair Classification under restricted shifts: Similar to Figure 7-6,
except where we restrict the type of loss that we consider to avoid shifts in hair-related
features.

7.4.4 Evaluation of alternative prompts under restricted shifts

Here, we consider a restricted class of shifts, where we do not permit shifts in certain

hair-related features (e.g., a direct intervention on blond hair is not allowed).

Shifts that do not change the causal mechanisms of the label In Figure 7-8, we

give the results analogous to Figure 7-6, except where we restrict the shifts that we

consider. In particular, we do not allow for shifts in hair-related features. We show
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Unshifted Dist. Worst-Case
Original

Worst-Case
MC (Gender)

Worst-Case
MC (Gender/Age)

Distribution
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Lo
ss

Classifier
Original Prompt
MC (Gender) Prompt
MC (Gender/Age) Prompt

(a)

Prompt

Distribution Original MC (G) MC (G/A)

Unshifted Dist. 0.2206 0.1742 0.1606
Worst-Case [Orig.] 0.3553 0.3126 0.2385
Worst-Case [MC (G)] 0.3649 0.3237 0.2462
Worst-Case [MC (G/A)] 0.3221 0.2694 0.2344

(b)

Figure 7-9: Blond Hair Classification under restricted shifts: Similar to Figure 7-6,
except where we use a different causal ordering where hair-related features come first,
and are not subject to shift

the corresponding shift (for the original prompt) in Table E.2. Table E.4 gives the full

order of the factorization we consider, along with a specification of which attributes

are allowed to shift. For all other attributes, we fix 𝛿𝑖 = 0. Here, the magnitude of the

worst-case loss decreases substantially (from around 40% to around 27%). However,

the same general conclusions hold, that the multi-class (gender/age) prompt has

similar worst-case performance to the original prompt, despite having substantially

better in-distribution performance.

Shifts that do not change the marginal distribution of the label In Figure 7-9, we

consider a different causal order (shown in Table E.3) where hair color (including

the label) comes first, and is not directly intervened upon. In effect, we consider

interventions of the form 𝑃 (𝐴 ∖𝐻 | 𝐻)𝑃 (𝐻) where 𝐻 corresponds to the attributes

describing hair color, and where 𝑃 (𝐻) remains fixed while 𝑃 (𝐴 ∖𝐻 | 𝐻) is allowed to

change. In this case, we do see more reliably robust performance from the multi-class

prompt, whose worst-case miss-classification error is around 24%, compared to a

worst-case loss of around 36% for the original prompt.
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7.5 Challenges and open directions

Unlike the other chapters in this thesis, the work presented here consists primarily of

exploratory work, working through the challenges that can arise when applying the

method developed in Chapter 6 to the problem of model design (in this case, prompt

design) on a real imaging dataset.

With that in mind, we discuss some of those challenges here, and potential solutions.

The first challenge is the relative complexity of interpreting the shifts themselves,

particularly in the absence of a clear causal structure over all variables. The second is

the correct performance metric: While worst-case performance is intuitive in some

ways, it is lacking in other ways, particularly when the magnitude of the change is not

clear a-priori.

7.5.1 Generating simpler, easier to interpret shifts

The first challenge is the relative complexity of the shifts that we consider. Here we

discuss two near-term ways of reducing the complexity, while still maintaining some

degree of flexibility and interpretability. These include (i) Finding shifts on fewer

attributes (e.g., single attribute interventions) (ii) Finding shifts with fewer degrees of

freedom (e.g., hard interventions instead of soft interventions)

Searching over single-target hard interventions: In the medical setting, one could

imagine the utility of understanding performance across simple scenarios like “if all

patients were tested on scanner brand X” or “if all patients received this lab test”.

These scenarios are less expressive shifts than the ones we currently consider, but

may be a more natural starting point for interpretable, causality-motivated shifts.

For a given causal graph, and discrete variables, this would yield a straightforward

brute-force approach to searching for single-target interventions: For each variable,

simply estimate the causal effect (on the loss) of the each possible interventions (one

for each value of the variable), and then report the most impactful interventions.
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The downside of this approach is the potential for inadequate overlap: To guard

against this on a first pass, one could assess the effective sample size for each interven-

tion6, or assess overlap via propensity scores, and eliminate from consideration those

interventions that have insufficient overlap.

Relaxing the assumption of no unmeasured variables, and pre-specifying a causal

ordering: To avoid making claims about the causal ordering of individual attributes

(except in relation to 𝑌 ), one could make an alternative assumption that would still

allow for estimating the impact of hard interventions. An illustrative causal structure

is given in Figure 7-10, where each attribute is correlated due to an unmeasured

confounder, but this confounder does not have any direct impact on the image 𝑋.

In this case, a hard intervention on any attribute 𝑍𝑖 can be estimated by using the

remaining attributes (and 𝑌 ) to block all backdoor paths to the loss.

Moreover, under this graph, the average loss under hard interventions on any given 𝑍𝑖

should be equivalent to the counterfactual loss if we performed full counterfactual

inference on each image to infer what it would have looked like under intervention

on 𝑍𝑖. This could be viewed as a computationally cheaper way (relative to using

a generative model that can generate counterfactual images) to seek out potential

counterfactual interventions where the model would perform poorly.

Sparse (soft) interventions using our existing approach: Finally, one could also

attempt to find shift vectors in a more computationally efficient way, which only

impact a smaller set of variables. Currently we find shifts using an ℓ2 constraint on 𝛿,

but we could also have considered an ℓ1 constraint to encourage sparsity. This does not

take advantage of the Taylor approximation approach, but could be easily implemented

using a generic non-convex solver, optimizing over the importance weights.

6The effective sample size (ESS) is often used in offline RL to assess
our ability to assess a policy, see http://www.nowozin.net/sebastian/blog/

effective-sample-size-in-importance-sampling.html for some details of ESS calculation.
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𝑈

𝑌𝑍2𝑍1 𝑍3 𝑍4

𝑋 ℓ(𝑓(𝑋), 𝑌 )

Figure 7-10: An illustrative graph where the impact (on the loss) of hard interventions
on each 𝑍𝑖 can be estimated, even though we cannot apply our existing approach due
to the unmeasured confounder 𝑈 . Note that this requires that 𝑈 has no direct effect on
𝑋, which is a limitation.

7.5.2 Choosing the right performance measure

In Example 6.1 (the lab testing example, also discussed in Chapter 6), the causal

framing of shifts and use of worst-case loss have a clear justification. We care about

the worst-case loss because we think it plausible that our future data will be drawn

from any of the distributions in the robustness set. In this context, the object of

interest is as much the estimated worst-case loss itself, as the shift that we find.

However, this motivation is harder to transport to the CelebA task, where (1) we

have less domain knowledge about the size and type of shifts that are plausible, which

motivates (in other work, e.g., Makar et al. (2022)) the assumption that certain

distributions like 𝑃 (𝑍 | 𝑌 ) could change arbitrarily, and (2) given the presence of

arbitrary shifts, the actual worst-case loss seems less useful as a metric, since we don’t

actually expect to see a true worst-case change.

Once the worst-case loss loses its meaning as “the loss under a plausible future

distribution”, the goal behind finding and interpreting adversarial shifts becomes more

nebulous. One might reasonably ask the question

What “should” the performance of our model look like, under these shifts?

How should these results impact the way we build or decide to use models?
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𝑍 𝑌

𝑋 ℓ(𝑓(𝑋), 𝑌 )

Figure 7-11: We do not necessarily expect that models can have invariant performance
under interventions on 𝑍, even in this anti-causal setting: Interventions on 𝑍 do
not influence 𝑌 , but may influence 𝑋. In general, there may not exist a model with
invariant performance across interventions on 𝑍. Indeed, some values of 𝑍 could
make the learning problem more difficult, if e.g., 𝑍 encodes some level of noise / blur
in the image.

As we illustrate in Figure 7-11, we should not necessarily expect models to have

invariant performance, even when the shifts occur in attributes that do not influence

𝑌 .

Distribution-specific regret as an alternative performance metric: An alternative

formulation would be to look at regret, defined as

sup
𝑃∈𝒫
{E𝑃 [ℓ(𝑓(𝑋), 𝑌 )]−min

𝑓∈ℱ
E𝑃 [ℓ(𝑓(𝑋), 𝑌 )]} (7.7)

where we compare our loss against the best predictor in hindsight for each distribution

𝑃 . Supposing we could compute this, it would tell us “the biggest gap between your

model and a fine-tuned model is XX%”. This perspective has two benefits: First, it

helps us understand how much of the excess loss is due to intrinsic difficulty, versus

something that we could adapt to in principle. Second, it is perhaps useful from an

adaptation perspective, if low regret is taken to imply that we could adapt quickly to

find the optimal model.

However, this perspective is not without its own drawbacks. For instance, while

comparing 𝑓 and the optimal model in hindsight 𝑓 *, we must note that any environment-

specific 𝑓 * is unlikely to be a plausible choice of predictor in the first place (before the

shift is observed). To illustrate, consider the illustrative example below, where there
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are two environments in the uncertainty set.

𝑃1(𝑋 = 1) = 0.5 𝑃2(𝑋 = 1) = 0.5

𝑃1(𝑌 = 1 | 𝑋 = 1) = 1 𝑃2(𝑌 = 1 | 𝑋 = 1) = 0

Here, 𝑋 is always a perfect predictor of 𝑌 , and the optimal predictor in 𝑃1 is 𝑓
*
1 (𝑋) = 1,

and in 𝑃2 the optimal predictor is 𝑓 *
0 (𝑋) = 0, as the correlation is reversed. A model

that ignores 𝑋 has invariant 0/1 loss of 0.5, but if we choose either 𝑓1 or 𝑓2 as a

predictor, they will always be incorrect in the opposing environment.

Given a fixed shift 𝑃 ′, one could nonetheless seek to use the idea of regret to characterize

what makes the distribution 𝑃 ′ difficult. This would also be more tractable to compute.

That is, for a fixed 𝑃 ′, compute

E𝑃 ′ [ℓ(𝑓(𝑋), 𝑌 )− ℓ(𝑓 *(𝑋), 𝑌 )] (7.8)

for a fixed model 𝑓(𝑋), and a model 𝑓 * learned on 𝑃 ′. One way to train 𝑓 * is to draw

samples from 𝑃 ′ in proportion to the importance weights.

Min-max regret as an alternative performance metric: A different alternative would

be to ask about the regret versus the worst-case optimal model, which would tell

us about the excess worst-case risk we are taking on in exchange for in-distribution

performance. This formulation would look something like

sup
𝑃∈𝒫
{E𝑃 [ℓ(𝑓(𝑋), 𝑌 )]− E𝑃 [ℓ(𝑓

*(𝑋), 𝑌 )]} (7.9)

where 𝑓 * = argmin𝑓∈ℱ sup𝑃∈𝒫 E𝑃 [ℓ(𝑓(𝑋), 𝑌 )]. Of course, actually computing this

would require solving the problem of learning such a predictor in the first place. For

some uncertainty sets, this may actually be plausible (like the worst-case subpopula-

tions over 𝑋,𝑌 considered in joint DRO, or the worst-case subpopulations over 𝑋

considered in marginal DRO (Duchi and Namkoong, 2021; Duchi et al., 2020a)).

Comparing model weaknesses: An alternative goal is to focus on understanding shifts
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that yield the largest difference in performance between two models. For instance, we

could straightforwardly optimize

sup
𝑃∈𝒫
{E𝑃 [ℓ(𝑓1(𝑋), 𝑌 )− ℓ(𝑓2(𝑋), 𝑌 )]} (7.10)

to find scenarios where 𝑓1 performs poorly relative to 𝑓2, and vice versa.
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Chapter 8

Conclusion

In this thesis, we have presented partial progress towards answering the question

How do we make machine learning as rigorously tested and reliable as any

medication or diagnostic test?

Taking a broader view of this question, we consider the drug development process,

shown schematically in the top of Figure 8-1. Given a promising candidate drug,

an exhaustive process of validation and iteration is required before approval and

widespread use. Pre-clinical testing occurs before drugs are ever used in humans,

including assessments of potential toxicity and testing in animals. Clinical trials are

conducted first in smaller populations to establish reasonable dosages, before going

to larger populations to demonstrate effectiveness. Even after a drug is approved,

post-marketing surveillance is conducted to monitor for adverse events, long-term

negative effects of a drug, and so on.

Machine learning models are not drugs — but we can still learn from the process of

drug development. Showing initial promise for a candidate model (e.g., high predictive

accuracy on historical datasets) is only the first step. On the other hand, rushing to

deploy models without sufficient oversight can cause more harm than good. Mitigating

the risk of faulty and biased predictions, while realizing the potential of machine

learning in health, requires us to consider the entire process of development.
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Candidate ApprovalPre-clinical Clinical trials Surveillance

Candidate
Pre-deployment 
reliability audits

Prospective 
evaluation

Monitoring and 
adaptation

Widespread 
deployment

Focus of this thesis

Figure 8-1: Comparing the machine learning development process (bottom) to the drug
development process (top). The focus of this thesis has been primarily on the “pre-
clinical” stage of assessing and improving the reliability of models prior to deployment.

This thesis has focused largely on assessing and improving the reliability of predictions

prior to deployment, analogous to pre-clinical testing in drug development. However,

deploying machine learning with confidence requires better tools for all parts of the

model deployment process. How should we design clinical trials for machine learning

models, taking into account the fact that models only impact patients via human

decision-makers, and will need to evolve over time? How do we appropriately monitor

the impact of deployed systems, not only in terms of predictive accuracy, but their

impact on patients and providers? How should we adapt models to new scenarios,

without compromising on safety guarantees? In keeping with the core themes of this

thesis, doing all of the above will require us to think carefully about the context in

which models are deployed, the process by which data is generated in healthcare, and

the careful balance between optimism and pessimism.

Ultimately, our goal is to see machine learning become an “unremarkable” part of the

standard of care, as reliable and trustworthy as any drug or diagnostic test we use

today. Our hope is that the research presented in this thesis provides a small step

towards bringing that future to pass.
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Part III

Appendix
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Appendix A

Appendix for Chapter 3

The supplement is structured as follows:

• Guidance on hyperparameter selection: We take a deeper dive into the impact

of hyperparameter selection on support and overlap estimation, including an

in-depth empirical evaluation with concrete recommendations on how to set

hyperparameters for support estimation given an a-priori belief that higher-order

intersections of variables may be excluded from the cohort.

• Application to Policy Evaluation: We discuss in more depth how the Over-

Rule algorithm can be applied to finding areas of sufficient coverage for policy

evaluation tasks.

• Additional experimental results: In addition to providing additional detail

on the experiments presented in the corresponding chapter of this thesis, we

also present several results that were only alluded to in the corresponding

chapter of this thesis. This includes the detailed results for the policy evaluation

task (antibiotic prescription), as well as additional rules learned for the opioids

prescription task.

• Theoretical results: We include proofs for our theoretical results, as well as an

additional Theorem bounding the generalization error of our two-stage estimator
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in terms of the error of the base estimators.

In addition, to build further intuition for Boolean rules, we illustrate a Boolean rule

in the DNF form in a 2D example in Figure A-1.

𝑥 1

𝑥 2

𝑏%

𝑏&

𝒞 = 𝑥 ∶ 𝑥 1 < 𝑏% ∨ 𝑥 2 < 𝑏&

𝒦 = 																																																																																																										

𝑥 1 < 𝑏% 𝑥 2 < 𝑏& 𝑥 1 ≥ 𝑏% 𝑥 2 ≥ 𝑏& 𝑥 1 < 𝑏%
∧ 𝑥 2 < 𝑏&

𝑥 1 < 𝑏%
∧ 𝑥 2 ≥ 𝑏&

𝑥 1 ≥ 𝑏%
∧ 𝑥 2 < 𝑏&

𝑥 1 ≥ 𝑏%
∧ 𝑥 2 ≥ 𝑏&

𝑎%⋅ = 𝟏, 0, 0, 1, 0, 1, 0, 0 5	

𝑎&⋅ = 𝟏, 𝟏, 0, 0, 1, 0, 0, 0 5	

Rule activations for two data points in ℝ&

Region covered by rules:

Active rules:

Set of possible rules

𝑟 = 𝟏, 𝟏, 0, 0, … 9

Figure A-1: Boolean rules on disjunctive normal form (DNF). We highlight data
points represented by their activations, 𝑎1·, 𝑎2· of rules from the set 𝒦 of all possible
rules. 𝒞 is the region described by the rule set and 𝑟 indicators for the rules.

Code for this chapter can be found at https://github.com/clinicalml/overlap-code

A.1 Choosing Hyperparameters

A.1.1 Overview

Considering OverRule along with the base estimator, there are a few distinct sets of

hyperparameters to choose

• Support Rules: The support rule estimation task requires a specification of

DNF versus CNF form, a specification of 𝛼, 𝜆0, 𝜆1 used in the objective, and the

number of samples to draw from the reference measure.

• Base Estimator and Overlap Labels: In addition to the hyperparameters of the

base estimator itself, a threshold 𝜖 must be chosen to generate overlap labels
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• Overlap Rules: These rules similarly require a specification of DNF or CNF

form, and specification of 𝛽, 𝜆0, 𝜆1.

For the base estimator itself, the hyperparameters can be tuned in the usual way using

cross-validation using a metric of interest (e.g., AUC). The choice of 𝜖 is studied in the

existing literature (Crump et al., 2009) and ultimately depends on the downstream

causal inference task, though 𝜖 = 0.1 is sometimes considered as a rule of thumb. For

the support rules, we typically set the number of reference measure samples to be as

large as computationally feasible.

For the overlap and support rules, the remaining hyperparameters can be chosen (1)

by using cross-validation to optimize for balanced accuracy (or some other metric, like

false positive rates) with respect to the overlap labels or uniform background samples,

(2) with some other objective in mind, e.g., setting the 𝜆 parameters to be large to

discourage many rules, even if more rules would increase accuracy, or (3) with the

goal in mind of choosing values (or exploring a range of values) most likely to discover

“interesting patterns” in the cohort.

We expand upon a concrete instance of this latter goal in the remainder of this

section, particularly as regards hyperparameter selection for support estimation, where

extremely high accuracy is particularly easy to achieve and is thus less informative for

the purposes of hyperparameter selection.

A.1.2 Choosing Support Hyperparameters to highlight exclusions

Motivation: In the context of our motivating applications, the primary purpose of

support estimation is to identify regions where we do not have any (or have very few)

observations. For instance, if there are no men in our dataset who also have cardiac

arrhythmia1, then this would be a clinically relevant fact that should be highlighted.

Thus, we would like to select hyperparameters which minimize our risk of overlooking

these types of exclusions.

1This would be surprising, as men with arrhythmia are fairly common in the general population
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In this section we give some guidance on how to select hyper-parameters for support

estimation with this particular goal in mind, based on synthetic and real-data ex-

periments. To recap, these hyper-parameters include (i) 𝛼, the support level, and

(ii) 𝜆0, 𝜆1, regularization parameters for learning support rules. There are also relevant

hyperparameters in the underlying algorithm of Wei et al. (2019), primarily the width

of the beam search used during column generation.

Summary: For this purpose, we recommend setting 𝛼 ≈ 1, and in particular we

consistently observed best results for 𝛼 ≥ 0.98. We observe that for 𝛼 sufficiently

close to 1, the results are less sensitive to different values of 𝜆0, 𝜆1. In addition, we

recommend setting the width of the beam search in the algorithm of Wei et al. (2019)

to be on the same order of magnitude as the number of binary features.

These recommendations have the effect of encouraging the algorithm to consider

higher-order interactions between variables that describe regions with little or no

support in the data (e.g., “there are no men with cardiac arrhythmia”), and we verify

this through experiments where we selectively remove regions of the data, and verify

whether or not the algorithm can recover these regions.

Concretely, we use both a synthetic and semi-synthetic case where we manually exclude

all points which satisfy a simple boolean rule, and look to identify that exclusion

automatically. That is to say, in both cases we take a dataset and remove data points

x ∈ {0, 1}𝑑 which satisfy a rule of the form 𝑥𝑖 = 1 ∧ 𝑥𝑗 = 1 for two features 𝑥𝑖, 𝑥𝑗 , and

then check if our algorithm incorporates this into the learned rule set.

• Synthetic Case: In this setting, we generate data comprised of 22 independent

binary features, such that 10 features are rare (binomial with 𝑝 = 0.01), 12

features are common (𝑝 = 0.5), and we remove all data points which satisfy a

conjunction of the last two common features.

• Semi-Synthetic Case (Antibiotic Prescription): In this setting, we used the

medical records dataset described in Section 3.5.4, and removed all men with

cardiac arrhythmia, which compromised 5% of the total population.
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This particular type of exclusion benefits from a CNF formulation (AND of ORs) of

the support task. This is because the exclusion can be described in a parsimonious way

(independently of other aspects of support) as a single additional rule. As discussed

in Section 3.4.1, it is straightforward to convert the CNF formulation to a DNF

formulation and vice versa. However, we note that the CNF formulation (for a fixed

number of reference samples) can be more computationally intensive than the DNF

formulation.

Synthetic Experiments

For the synthetic case, our goal is to build intuition that we can validate in the semi-

synthetic setting. We will first describe our data-generating process in more detail,

and then describe the results and conclusions from an exhaustive hyperparameter

search.

Synthetic Data Generation: We generate data as follows. Note that we are only

concerned (for the moment) with estimating support, so we do not include any notion

of treatment groups.

• We sample 10,000 data points 𝑥 ∈ {0, 1}𝑑 where 𝑑 = 22, by sampling (for each

data point):

– 10 “rare” binary features 𝑟1, . . . , 𝑟10, generated independently with 𝑝 = 0.01

– 12 “common” binary features 𝑐1, . . . , 𝑐12, generated independently with

𝑝 = 0.01

– Thus, each data point is given by x = [𝑟1, . . . , 𝑟10, 𝑐1, . . . , 𝑐12]

• We remove all data points which satisfy 𝑐11 = 1∧ 𝑐12 = 1, which is approximately

25% of all data points. Our goal is to recover the corresponding inclusion rule

as part of the final rule set of 𝑐11 = 0 ∨ 𝑐12 = 0.

Hyperparameter Search & Outcomes: With this setup, we estimate support using the
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algorithm given in the corresponding chapter of this thesis, using every combination

of the following hyperparameters

• 𝛼 ∈ {0.95, 0.96, 0.97, 0.98, 0.99}, the constraint on covering our data.

• 𝜆0 ∈ {0, 10−6, 10−4, 10−2}, and 𝜆1 ∈ {10−6, 10−4, 10−2}, the regularization terms.

• 𝐵 ∈ {10, 15, 20, 25, 30}, the width of the beam search used in Wei et al. (2019)

For each combination of hyperparameters, we run the experiment three times, gener-

ating a new set of fake data with each run. The same three random seeds are used

across all hyperparameter combinations. We recorded a number of relevant outcomes,

including

• Does the final rule set include the inclusion rule 𝑐11 = 0 ∨ 𝑐12 = 0?

• How many rules are considered in the final rule set, and how long (on average)

are these rules?

• How many “perfect” rules are found, which exclude none of the generated data

points?

Observations: The full results of the hyperparameter search are given in Table A.5,

but we summarize our observations and recommendations here.

• Recovery by LP→ recovery by rounded rules: Across all hyperparameter settings,

if the desired inclusion rule was found during column generation (and thus

considered by the LP), it was uniformly included in the final rounded rule.2

Thus, our goal is to ensure that the desired inclusion is picked up by the LP

during column generation.

• Beam Search Width should be higher than # features: Recall that the LP

relaxation with column generation starts by considering only rules with a single

2This is not a general rule; While it holds in the synthetic case, it will not hold exactly in the
semi-synthetic case with real data, as demonstrated in the next section.
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literal, and beam search is used to select additional rules for consideration, with

a maximum width of 𝐵. If 𝐵 is lower than the number of rare features, then the

first 𝐵 rules considered will tend to be rules on single rare features. This prevents

the beam search from exploring interactions between more prevalent features.

Setting the beam-search width to a sufficiently high number (≈ total features)

forces the column generation to explore all rules with two literals, helpful for

recovery of our desired inclusion rule. This is demonstrated in Table A.1.

• Higher values of 𝛼 produce more stable results across 𝜆. Higher values of 𝛼

tends to render the results less sensitive to choice of regularization 𝜆, and tends

to produce more reliable results in terms of recovery of our desired rule. As

demonstrated in Tables (A.2a-A.2c), lower values of 𝛼 are more sensitive to 𝜆1

in terms of both recovering the desired exclusion, as well as the number of rules

found. At higher values of 𝛼, there is more consistent recovery of “perfect” rules,

which exclude none of the sample points (and hence do not contribute to the

constraint).

Table A.1: Beam Search Width and proportion of runs (across all other hyperparameter
settings of 𝛼, 𝜆0, 𝜆1) in which the synthetic region was correctly identified by the final
rule set (“Rounded”). Once the beam search width is sufficiently high (larger than the
number of rare features), further increasing it does not appear to help.

Beam Width 10 15 20 25 30

Recovered 0.07 0.87 0.87 0.87 0.87

Discussion / Intuition: Due to the greedy nature of the column generation procedure,

a common failure mode is to only consider rules that include rare features, because

those singleton rules exclude a significant amount of reference measure, and excluding

rare features does not violate the 𝛼-constraint. For instance, a support rule of the

form “not one of these K rare features” will (roughly speaking) exclude 𝐾 percent of

the samples (if each rare feature has 1% prevalence), while producing a volume of 2−𝐾 .

Thus, an overly greedy approach can obtain an objective value that is exponentially

small in the number of rare features excluded, as long as it does not hit the 𝛼 constraint.

This has the effect of “crowding out” more complex rules.
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(a) Recovery of inclusion rule

𝜆1 =1e-6 𝜆1 =1e-4 𝜆1 =1e-2

𝛼 = 0.95 1.0 1.0 0
𝛼 = 0.96 1.0 1.0 0
𝛼 = 0.97 1.0 1.0 1.0
𝛼 = 0.98 1.0 1.0 1.0
𝛼 = 0.99 1.0 1.0 1.0

(b) Avg. # of rules

𝜆1 =1e-6 𝜆1 =1e-4 𝜆1 =1e-2

𝛼 = 0.95 23.67 15.75 5.0
𝛼 = 0.96 35.58 33.33 4.0
𝛼 = 0.97 39.83 31.92 4.0
𝛼 = 0.98 44.17 47.17 23.83
𝛼 = 0.99 31.42 31.25 27.67

(c) Avg. # of Perfect Rules

𝜆1 =1e-6 𝜆1 =1e-4 𝜆1 =1e-2

𝛼 = 0.95 12.5 9.25 0.0
𝛼 = 0.96 20.75 18.67 0.0
𝛼 = 0.97 24.67 24.92 1.0
𝛼 = 0.98 30.17 28.33 14.0
𝛼 = 0.99 23.0 24.08 20.42

Table A.2: Value of 𝛼 parameter and 𝜆1 parameters, for a fixed beam search width
(𝐵 = 15), along with (a) the proportion of runs (across all other hyperparameter
settings) in which the synthetic region was correctly identified by the final rule set, (b)
the number of rules in the final solution, and (c) the number of perfect rules, defined as
those which exclude none of the samples but which exclude some number of reference
points. Note that these results marginalize over 𝜆0, and (b-c) are averaged across all
runs.

Take a concrete example in Table A.2b to build intuition for how the greedy set

covering algorithm can fail in this case: Suppose 𝜆0 = 0, 𝜆1 = 0.01, and 𝛼 = 0.95,

and suppose that our current solution excludes 5 rare features before hitting the 𝛼

constraint, then the reference volume is given by 2−5 ≈ 0.03. In this case, adding the

desired inclusion rule will reduce the volume by 1/4 (a reduction in absolute terms

which is < 0.01) while increasing the regularization penalty by 0.02. Thus, it will not

be included.

To avoid this failure mode, we can increase 𝛼, which has the effect of reducing the
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number of singleton rules 𝐾 that can be added before violating the constraint.

Semi-Synthetic Experiments

In the semi-synthetic experiment, our goal is to verify that the intuition from the

synthetic setting carries over to a real dataset.

Semi-Synthetic Data Generation: We generated the dataset for this experiment as

follows.

1. Subsampling: We randomly sample 5000 patients from the full cohort of 65k

patients, due to computational constraints. In this subset, there were 185 binary

features, and 5 continuous features.

2. Synthetic Exclusion: We remove all male patients with cardiac arrhythmia,

which was around 5% of the total population.

3. Pre-Processing: Given the prevalence of very rare binary features, we removed

all binary features with a prevalence of less than 1%, as well as all samples

that had any of these features, resulting in the removal of 118 binary features

and 850 samples. This was done both for computational reasons (to reduce the

number of features) as well as to condition the problem such that it is more

realistic for the support estimation to recover higher-order interactions.

4. Final Dataframe: The final dataset had 66 binary features and 5 continuous

features, with the latter being converted into binary features via the use of

deciles.

Hyperparameter Search: We then followed a similar approach to the synthetic

experiment, using every combination of the following hyperparameters. For each

combination, we ran the algorithm three times, inducing randomness over the data by

taking a random 80% of the data with each iteration.

• 𝛼 ∈ {0.95, 0.96, 0.97, 0.98, 0.99}
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• 𝜆0 ∈ {10−6, 10−4, 10−2}, 𝜆1 ∈ {10−6, 10−4, 10−2}

In this case, we fixed the width of the beam search at 𝐵 = 1000 (which encourages a

more thorough search during column generation, as discussed above), and also found

that we needed to adjust the value of 𝐾, another hyperparameter from the column

generation algorithm, to be roughly on the same order as 𝐵. The parameter 𝐾 controls

how many rules get added to the LP at each iteration. We also fixed the maximum

number of iterations at 10. We recorded all the same outcomes as were used in the

synthetic case.

Observations: We observed that a number of patterns from the synthetic case carried

over to the semi-synthetic case.

• Inclusion in LP (mostly) implies inclusion in final rules: When the desired

inclusion rule appears among the rules considered during column generation, it

mostly appears in the final rounded rules, in 80% of runs. We conjecture that

this is due to a large number of “perfect” rules existing in this dataset, which

are also two-variable interactions, though many of these appear to be noise (see

example inclusion rules below).

• Increasing 𝛼 leads to more consistent recovery in the LP of the desired inclusion

rule. However, as discussed, this does not always translate into the desired

inclusion rule showing up in the final rounded rule set. See Table A.3

• Higher values of 𝛼 are less sensitive to choice of 𝜆: In Tables (A.4a-A.4b) we

demonstrate that, similar to the synthetic case, the number of rules and the

number of “perfect” rules is highly sensitive to 𝜆1 when 𝛼 is lower, but for

𝛼 ≥ 0.98 it yields consistent results across different values of 𝜆.

Example “Perfect” Rules: These rules exclude none of the samples in our data, while

excluding reference points. While occasional rules appear to be based on reasonable

exclusions (such as a lack of pregnant veterans, given that 80% of veterans are male in

our data), most appear to be combinations of rare features (such as rare medications)
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that simply do not appear together in our data. These are three representative rules

from one run (where 𝛼 = 0.99, 𝜆0 = 𝜆1 = 1𝑒 − 6, resulting in 23 rules, of which 17

were “perfect”):

• not (Pregnant and Veteran)

• not (Complicated Hypertension and Previous Medication of Cephalexin)

• not (Previous Medication of Doxycycline and Norfloxacin)

Table A.3: Values of 𝛼 and the proportion of runs in which the desired inclusion rule
was included in the LP during column generation, as well as included in the final rule
set. Results are averaged over values of 𝜆0, 𝜆1, with the exception of 𝜆0 = 𝜆1 = 1𝑒− 2,
because this did not run for 𝛼 = 0.97

LP Final Rule Set

𝛼 = 0.95 0.50 0.50
𝛼 = 0.96 0.75 0.71
𝛼 = 0.97 1.00 0.88
𝛼 = 0.98 1.00 0.62
𝛼 = 0.99 1.00 0.62
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(a) Recovery of inclusion rule

𝜆1 =1e-6 𝜆1 =1e-4 𝜆1 =1e-2

𝛼 = 0.95 0.7 1.0 0.0
𝛼 = 0.96 1.0 0.8 0.0
𝛼 = 0.97 0.8 0.7 1.0
𝛼 = 0.98 0.7 0.5 0.7
𝛼 = 0.99 0.8 0.7 0.3

(b) Avg. # of rules

𝜆1 =1e-6 𝜆1 =1e-4 𝜆1 =1e-2

𝛼 = 0.95 210.2 115.8 6.0
𝛼 = 0.96 334.3 148.0 5.0
𝛼 = 0.97 25.2 75.2 49.8
𝛼 = 0.98 25.0 24.7 24.3
𝛼 = 0.99 23.3 23.3 23.7

(c) Avg. # of Perfect Rules

𝜆1 =1e-6 𝜆1 =1e-4 𝜆1 =1e-2

𝛼 = 0.95 200.2 105.8 0.0
𝛼 = 0.96 326.0 140.0 0.0
𝛼 = 0.97 19.5 69.0 42.2
𝛼 = 0.98 21.3 21.0 20.7
𝛼 = 0.99 19.0 18.7 19.7

Table A.4: Value of 𝛼 parameter and 𝜆1 parameters, along with (a) the proportion
of runs (across all other hyperparameter settings) in which the synthetic region was
correctly identified by the final rule set, (b) the number of rules in the final solution,
and (c) the number of perfect rules, defined as those which exclude none of the samples
but which exclude some number of reference points. Note that these results marginalize
over 𝜆0 ∈ {1𝑒− 6, 1𝑒− 4} because 𝜆0 = 𝜆1 = 1𝑒− 2 did not run for 𝛼 = 0.97, and
(b-c) are averaged across all runs.
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Table A.5: Rec: Proportion of runs where synthetic exclusion was recovered. # R:
Number of rules in final output. # PR: Number of “perfect” rules which exclude zero
data points. Length: Average length of rules. Each entry is the average of three
independent runs with different random seeds, and run with 𝐵 = 15

𝛼 𝜆0 𝜆1 Rec # R # PR Length

0.95 0 1e-06 1.00 31.00 17.00 2.36
1e-04 1.00 19.33 12.00 2.25
1e-02 0.00 5.00 0.00 1.00

1e-06 1e-06 1.00 30.67 17.00 2.37
1e-04 1.00 19.33 12.00 2.25
1e-02 0.00 5.00 0.00 1.00

1e-04 1e-06 1.00 27.00 15.00 2.36
1e-04 1.00 18.33 12.00 2.23
1e-02 0.00 5.00 0.00 1.00

1e-02 1e-06 1.00 6.00 1.00 1.17
1e-04 1.00 6.00 1.00 1.17
1e-02 0.00 5.00 0.00 1.00

0.96 0 1e-06 1.00 46.33 28.33 2.69
1e-04 1.00 43.67 25.00 2.43
1e-02 0.00 4.00 0.00 1.00

1e-06 1e-06 1.00 45.33 27.67 2.70
1e-04 1.00 43.67 25.67 2.41
1e-02 0.00 4.00 0.00 1.00

1e-04 1e-06 1.00 45.67 26.00 2.67
1e-04 1.00 41.00 23.00 2.41
1e-02 0.00 4.00 0.00 1.00

1e-02 1e-06 1.00 5.00 1.00 1.20
1e-04 1.00 5.00 1.00 1.20
1e-02 0.00 4.00 0.00 1.00

0.97 0 1e-06 1.00 49.67 31.00 2.74
1e-04 1.00 38.00 30.00 2.51
1e-02 1.00 4.00 1.00 1.25

1e-06 1e-06 1.00 49.67 31.00 2.73
1e-04 1.00 38.00 30.00 2.51
1e-02 1.00 4.00 1.00 1.25

1e-04 1e-06 1.00 48.33 29.00 2.71
1e-04 1.00 37.33 29.33 2.55
1e-02 1.00 4.00 1.00 1.25

1e-02 1e-06 1.00 11.67 7.67 2.27
1e-04 1.00 14.33 10.33 2.43
1e-02 1.00 4.00 1.00 1.25

0.98 0 1e-06 1.00 47.00 33.67 2.82
1e-04 1.00 50.67 30.33 2.74
1e-02 1.00 27.33 16.00 1.97

1e-06 1e-06 1.00 46.67 33.33 2.81
1e-04 1.00 50.67 30.33 2.74
1e-02 1.00 27.00 15.67 1.97

1e-04 1e-06 1.00 46.00 31.33 2.74
1e-04 1.00 50.67 31.00 2.74
1e-02 1.00 28.00 16.33 1.99

1e-02 1e-06 1.00 37.00 22.33 2.29
1e-04 1.00 36.67 21.67 2.26
1e-02 1.00 13.00 8.00 1.95

0.99 0 1e-06 1.00 33.00 23.33 2.33
1e-04 1.00 33.00 27.33 2.33
1e-02 1.00 28.33 21.00 1.96

1e-06 1e-06 1.00 33.00 21.67 2.36
1e-04 1.00 34.33 24.67 2.30
1e-02 1.00 28.33 21.00 1.96

1e-04 1e-06 1.00 31.33 25.67 2.34
1e-04 1.00 27.00 20.67 2.17
1e-02 1.00 28.33 21.00 1.96

1e-02 1e-06 1.00 28.33 21.33 2.08
1e-04 1.00 30.67 23.67 2.11
1e-02 1.00 25.67 18.67 1.96
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A.2 Application of OverRule to Policy Evaluation

In this section we give the detailed algorithm for applying OverRule to policy evaluation,

as described in the corresponding chapter of this thesis. In this context, we wish to

evaluate not a specific treatment decision (e.g., the average treatment effect of giving

a drug vs. withholding it), but rather a conditional policy representing a personalized

treatment regime, which we will refer to as the target policy. This problem falls

under the setting of off-policy policy evaluation when this target policy 𝜋 differs from

the policy which generated the data, which we observe in the observational data as

𝑝(𝑇 = 𝑡 | 𝑥).

Rationale for ℬ𝜖(𝜋): In the corresponding chapter of this thesis, we drew a connection

between the set ℬ𝜖 and the following set, a function of the target policy 𝜋, ℬ𝜖(𝜋) :=

{𝑥 ∈ 𝒳 ;∀𝑡 : 𝜋(𝑡 | 𝑥) > 0 : 𝑝(𝑇 = 𝑡 | 𝑥) > 𝜖}. In this section, we recall the theoretical

rationale for why we are restricted to this set, if we wish to evaluate the policy 𝜋 given

samples generated according to 𝑝(𝑇 = 𝑡 | 𝑥).

Following similar notation to Kallus and Zhou (2018b), we will let 𝑋 ∈ 𝒳 correspond

to covariates, 𝑌 ∈ 𝒴 to an outcome of interest, 𝑇 ∈ 𝒯 to a treatment decision. We

write 𝜋(𝑡|𝑥𝑖) as the probability of each treatment under the policy, which may be

stochastic. We write 𝑌 (𝑡) to represent the potential outcome under treatment 𝑡. In

this setting, we wish to evaluate the expected value of 𝑌 under the target policy, which

we denote as E[𝑌 (𝜋)].

Proposition A.1 (Informal). The expectation E[𝑌 (𝜋)] is only defined w.r.t. the observed

distribution 𝑝(𝑋,𝑇, 𝑌 ) for the subset 𝐵 ∈ 𝒳 such that ∀𝑥 ∈ 𝐵, 𝜋(𝑇 = 𝑡 | 𝑋 = 𝑥) >

0 =⇒ 𝑝(𝑇 = 𝑡 | 𝑋 = 𝑥) > 0

Proof. Under the assumption that ignorability (Pearl, 2009) holds, we can write out

our desired quantity as follows in terms of observed distribution 𝑝(𝑋,𝑇, 𝑌 ). For
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brevity, let 𝑝(𝑡 | 𝑥) = 𝑝(𝑇 = 𝑡 | 𝑋 = 𝑥), 𝑝(𝑥) = 𝑝(𝑋 = 𝑥), et cetera.

E[𝑌 (𝜋)] (A.1)

=

∫︁
𝒳 ,𝒯 ,𝒴

𝑦 · 𝑝(𝑥)𝜋(𝑡 | 𝑥) · 𝑝(𝑌 (𝑡) = 𝑦 | 𝑥, 𝑡)𝑑𝑥𝑑𝑡𝑑𝑦

=

∫︁
𝒳 ,𝒯 ,𝒴

𝑦 · 𝑝(𝑥)𝜋(𝑡 | 𝑥)
𝑝(𝑡 | 𝑥)

· 𝑝(𝑌 (𝑡) = 𝑦 | 𝑥, 𝑡)𝑝(𝑡 | 𝑥)𝑑𝑥𝑑𝑡𝑑𝑦 (A.2)

=

∫︁
𝒳 ,𝒯 ,𝒴

𝑦 · 𝑝(𝑥)𝑝(𝑡 | 𝑥)

· 𝑝(𝑌 = 𝑦 | 𝑥, 𝑡)𝜋(𝑡 | 𝑥)
𝑝(𝑡 | 𝑥)

𝑑𝑥𝑑𝑡𝑑𝑦 (A.3)

=

∫︁
𝒳 ,𝒯 ,𝒴

𝑦 · 𝑝(𝑥, 𝑡, 𝑦) · 𝜋(𝑡 | 𝑥)
𝑝(𝑡 | 𝑥)

𝑑𝑥𝑑𝑡𝑑𝑦 (A.4)

Where in Equation (A.2) we multiply by one, in Equation (A.3) we use the assumption

of ignorability to write 𝑝(𝑌 (𝑡) = 𝑦 | 𝑋 = 𝑥, 𝑇 = 𝑡) = 𝑝(𝑌 = 𝑦 | 𝑋 = 𝑥, 𝑇 = 𝑡)

and rearrange terms, and in Equation (A.4) we collect the terms which represent

the observed distribution. For our purposes, it is sufficient to look at the integral in

Equation (A.4) to see that it requires the condition that for all (𝑥, 𝑡) ∈ 𝒳 × 𝒯 , the

relationship 𝜋(𝑇 = 𝑡 | 𝑋 = 𝑥) > 0 =⇒ 𝑝(𝑇 = 𝑡 | 𝑋 = 𝑥) > 0 must hold.

The condition given in Proposition A.1 is sometimes referred to as the condition of

coverage (see Sutton and Barto, 2017, Section 5.5) in off-policy evaluation. Rewriting

Equation (A.4) as an expectation over the observed distribution, we can see that this

leads naturally to the importance sampling (Kahn, 1955) estimator

E
[︂
𝑌
𝜋(𝑇 = 𝑡 | 𝑋 = 𝑥)

𝑝(𝑇 = 𝑡 | 𝑋 = 𝑥)

]︂
≈ 1

𝑛

𝑛∑︁
𝑖=1

𝑦𝑖
𝜋(𝑡𝑖 | 𝑥𝑖)

𝑝(𝑡𝑖 | 𝑥𝑖)
, (A.5)

which approximates our desired quantity. If 𝜖 > 𝑝(𝑡|𝑥) > 0 for some small value of 𝜖,

then the variance of the importance sampling estimator increases dramatically. This

motivates our notion of “strict” coverage, that for each value of 𝑥 ∈ ℬ𝜖(𝜋), we require

that for all actions 𝑡 such that 𝜋(𝑡|𝑥) > 0, the condition 𝑝(𝑡|𝑥) > 𝜖 must hold.
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Note that this differs conceptually from the binary treatment case in an important

respect: Since we are not seeking to contrast all treatments, we do not require that

𝜇(𝑡|𝑥) > 𝜖, ∀𝑡 ∈ 𝒯 , but rather just for those treatments which have positive probability

of being taken under the target policy.

Algorithmic Details As described in the corresponding chapter of this thesis, applying

OverRule to the policy evaluation setting only requires a single change to the procedure,

which is that the set �̂�
𝜖
(𝜋) is used in place of the set �̂�

𝜖
in Equation (3.9) in

Section 3.4.2. Nonetheless, we provide an explicit self-contained sketch of the procedure

here to avoid any confusion:

1. Given a dataset, find an 𝛼-MV set 𝒮𝛼 using the approach given in the corre-

sponding chapter of this thesis.

2. Using this set, learn the conditional probabilities of each possible treatment

𝑡 ∈ 𝒯 , resulting in estimated propensities �̂�(𝑇 = 𝑡 | 𝑋 = 𝑥)

3. For each data point in the support set 𝒮𝛼, assign the label

�̂�𝑖(𝜋) =
∏︁

𝑡∈𝜋(𝑥𝑖)

1[�̂�(𝑇 = 𝑡 | 𝑋 = 𝑥𝑖) ≥ 𝜖],

where 𝜋(𝑥𝑖) := {𝑡 : 𝜋(𝑡|𝑥𝑖) > 0}. The set �̂�
𝜖
(𝜋) is the collection of data points

such that �̂�𝑖(𝜋) = 1. Note that we know the target policy 𝜋 that we are evaluating,

so we can evaluate 𝜋(𝑡|𝑥𝑖) for each data point.

4. Solve the following Neyman-Pearson-like classification problem, using the tech-

niques discussed in the corresponding chapter of this thesis. Note that this is

identical to solving Equation (3.9) in Section 3.4.2, with the substitution of
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�̂�
𝜖
(𝜋) for �̂�

𝜖
:

ℬ̂(𝜋) := argmin
𝐶

1

|�̂� ∖ �̂�|

∑︁
𝑖∈�̂�∖�̂�𝜖

(𝜋)

1[𝑥𝑖 ∈ 𝒞] +𝑅(𝒞)

s.t.
∑︁

𝑖∈�̂�∩�̂�𝜖
(𝜋)

1[𝑥𝑖 ∈ 𝒞] ≥ 𝛽|�̂� ∩ �̂�
𝜖
(𝜋)| .

A.3 Additional Experimental Results

As a general note across all experiments: When estimating support in OverRule, we

use 𝑚𝑅 = 𝑐 ·𝑚 · 𝑑 uniform reference samples where 𝑐 > 0 is some constant, 𝑚 is the

number of data samples and 𝑑 their dimension. Continuous features were binarized by

deciles unless otherwise specified. Finally, for propensity-based base estimators, we

use the standard threshold 𝜖 = 0.1 (Crump et al., 2009) throughout.

A.3.1 Iris

For the results given in the corresponding chapter of this thesis, we fit OverRule using

a 𝑘-NN base estimator (𝑘 = 8) and DNF Boolean rules for both support and overlap

rules, with 𝛼 = 0.9 and regularization 𝜆0 = 2 · 10−2, 𝜆1 = 0 for support rules, a cutoff

of 𝜖 = 0.1, and 𝛽 = 0.9, 𝜆0 = 10−2, 𝜆1 = 0 for overlap rules.

A.3.2 Jobs

For the results given in the corresponding chapter of this thesis, we use the following

hyperparameters:

1. Support Rules: CNF formulation, along with hyperparamters 𝛼 = 0.98, 𝜆0 =

10−2, 𝜆1 = 10−3.

2. Base Estimators: For CBB we used 𝛼 = 0.1, for the logistic regression propensity

estimator we used 𝐶 = 1 in LogisticRegression in scikit-learn, and other
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hyperparameters were chosen based on cross-validation: For 𝑘-NN, we selected

𝑘 ∈ {2, 4, . . . , 20} based on held-out accuracy in predicting group membership

and used 1/𝑘 as threshold. For OSVM, we use a Gaussian RBF-kernel with

bandwidth 𝛾 ∈ [10−2, 102], selected based on the held-out likelihood of kernel

density estimation.

3. Overlap Rules: We use a DNF formulation with 𝛽 = 0.9 and select 𝜆0 ∈

[10−4, 10−1] and 𝜆1 ∈ [10−4, 10−2]. Within each class of base estimators, we

choose these parameters based on average training performance over 5-fold CV,

choosing the setting in each class that achieves a balanced accuracy (with respect

to the base-estimator overlap labels) within 1% of the best performing model in

the class, while minimizing the number of rules.

Note that the reported results are using the held-out portions of each 5-fold CV run,

and using the ground-truth overlap labels, which are at no point used during the

hyperparameter tuning process. This reflects a real-world scenario where ground-truth

is unknown and only the base-estimator derived labels are given. The reported rules

in the figure were selected from one of the five cross-validation runs for the same

hyperparameter setting chosen using the above procedure. In Figure A-2 we see the

correlation between held-out balanced accuracy for the rule set w.r.t. the experimental

label, and the balanced accuracy for the rule set in approximating the base estimator.

Note that AUC is equal to balanced accuracy for binary predictions.

A.3.3 Opioids

For the results in the corresponding chapter of this thesis, we fit an OverRule model

(OR) to a random forest base estimator with 𝛽 = 0.8 for ℬ and 𝛼 = 0.9 for 𝒮 picked a

priori. The hyperparameter 𝜆0 was set to 𝜆0 =1e− 3 for ℬ, and 𝜆0 =1e− 5 for 𝒮, and

𝜆1 = 0 for both.

For a full table of covariate statistics for the Opioids dataset, see Table A.6. For a

illustration of the rules learned by OverRule to describe the complement of the overlap
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Figure A-2: Results from the Jobs datasets for OverRule approximations of different
base estimators, sweeping 𝜆0, 𝜆1. AUC (i.e., balanced accuracy) is measured with
respect to the experimental indicator. The dotted line ‘Propensity (base)’ refers to the
logistic regression base estimator, ‘k-NN (base)‘ refers to the k-NN base estimator, and
‘SVM (base)‘ refers to the one-class SVM. The colored points refer to performance of
OverRule using the respective base estimator, for different values of 𝜆0, 𝜆1

set, see Figure A-3.
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History:
¬ Injury of face and neck

and ¬ Unspecified septicemia 
and ¬ Other injury of chest wall 
and ¬ Acute respiratory failure
and ¬ Altered mental status 
and Surgical procedure:

¬ Endocrine system
and ¬ Mediastinum (thoracic cavity)

and ¬Auditory system

Surgical procedure:
¬ Respiratory

and ¬ Nervous
and ¬ Musculoskeletal
and ¬ Cardiovascular
and History:

¬ Tobacco use disorder 
and ¬ Thoracic or lumbosacral 

neuritis or radiculitis: 
unspecified 

and ¬ Lumbosacral spondylosis 
without myelopathy 

and ¬ Degeneration of cervical 
intervertebral disc 

and ¬ Degeneration of lumbar or 
lumbosacral intervertebral disc

Surgical procedure:
Maternity

and History:
and ¬ Degeneration of lumbar or 

lumbosacral intervertebral disc 

Rule S.1: Rule B.1: or Rule B.2:

𝒪# = S.1 ∧ ¬ (B.1 ∨ B.2)

Support rules 𝒮( Propensity overlap complement rules ℬ*+

Figure A-3: OverRule description of the complement of the overlap between post-
surgical patients with higher and lower opioid prescriptions. If the support rule (left)
applies and neither propensity overlap rule (right) applies, a patient is consider to
be in the overlap set. ¬ indicates a negation. The rules cover 36% of patients with
balanced accuracy 0.92 w.r.t. the base estimator (random forest). Procedures are not
mutually exclusive.

Supplemental Rules: We learned an additional set of rules, motivated by our experi-

ments in Section 3.5.3, where we noted that the support rules did not capture certain

combinations of surgery types or conditions that should be rare or non-existent. This

motivated the empirical investigation in Section A.1.2, and this vignette represents

the result of re-running our procedure with this goal in mind.

For support rules, we followed the recommendations laid out in Section A.1.2, choosing

to use a CNF formulation with 𝛼 = 0.98, 𝜆0 = 0, 𝜆1 = 0.01. Continuous features were

binarized using deciles. For our base estimator, we used a random forest classifier with

100 trees and 20 minimum samples per leaf, and we used 𝜖 = 0.1 as our cutoff. For the

overlap rules, we searched over the following grid of hyperparameters, with the goal of

maximizing balanced accuracy with respect to the overlap labels on a validation set:

𝛽 ∈ {0.8, 0.9, 0.95} and then a set where 𝜆0 = 0 and 𝜆1 ∈ {10−3, 2 · 10−3, 10−2}, and a

set where 𝜆1 = 0 and 𝜆0 ∈ {10−3, 2 · 10−3, 10−2}. The selected hyperparameters were

𝛽 = 0.95, 𝜆0 = 0, 𝜆1 = 10−3. The support rules cover 98.5% of the test samples, and
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the overlap rules achieved a balanced accuracy of 0.96 on a held-out test set (with

respect to the overlap labels) and covered 36% of the test samples. The chosen ruleset

is given in given in Figures A-4-A-5.

We note that the resulting support rules, in line with the findings in Section A.1.2,

include a large number of rules that exclude zero training data points, by identifying

rare interactions of features. For instance, the rules identify that there are no men in

our dataset who have maternity surgery, an intuitive exclusion.

We shared this rule set with one of the participants of the original user study, who

made the following observations: First, the support rules in Figure A-4 generally made

sense as excluding combinations that are intuitively absent from the data (e.g., men

w/maternity surgery) or that are just combinations of features that are themselves

rare. Regarding the overlap rules in Figure A-5, they observed that B.1 and B.2

were consistent with clinical intuition, where B.2 likely serves to exclude C-section

patients with epidurals. B.3 and B.4 were intuitive with the exception of the negations,

e.g., it is unclear what the role of abdominal pain is in B.3, although it could be

correlated with generalized pain syndromes. B.5-B.7 correspond to individuals with

lower back pain (Lumbago) and neck pain (Cervicalgia) which are intuitive indicates

for higher doses of opioids. B.8 corresponds to plastic surgery, and the broad category

of respiratory surgery in B.9 could correspond to thoracic surgery, one of the main

surgical categories associated with opioid misuse. B.10-B.12 relate to back pain, which

is associated with higher opioid dosages.

A.3.4 Observational Study: Policy Evaluation of Antibiotic Prescrip-

tion Guidelines

Antibiotic resistance is a growing problem in the treatment of urinary tract infections

(UTI) (Sanchez et al., 2016), a common infection for which more than 1.6 million

prescriptions are given annually in the United States (Shapiro et al., 2013). With this

in mind, we are interested in the following clinical problem: When a patient presents
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NONE OF: 

Support rules 𝓢

Male

and Proc: Maternity

Proc: Auditory

Hist: Unspecified septicemia

Hist: Acute respiratory failure

Male

and Proc: Female Genital

Hist: Other screening mammogram

and Proc: Male Genital

Proc: Musculoskeletal

and Proc: Male Genital

Hist: ADD (w/hyperactivity)

and (Hist: Rheumatoid arthritis

OR Hist: Other symptoms referable to back

OR Hist: Myalgia and myositis: unspecified)

Hist: ADD (without hyperactivity)

and (Hist: Rheumatoid arthritis

OR Hist: Other symptoms referable to back

OR Proc: Male Genital)

Hist: Major depressive affective disorder

and (Hist: Other symptoms referable to back

OR Proc: Male Genital)

Proc: Respiratory

and Proc: Female Genital

Hist: Injury of face and neck

and Proc: Male Genital

Hist: Hypopotassemia

and Hist: Hypersomnia with sleep apnea

Hist: Injury of face and neck

and Proc: Fitting and adjust. of vascular catheter

Figure A-4: Support Rules using CNF formulation for the Opioids task. Proc indicates
a procedure, and Hist indicates a history of a condition. A sample is considered in the
support set if NONE of the above rules apply. Note that rules are negated for simplicity
of presentation, as “AND NOT (X AND Y)” is equivalent to “AND (NOT X OR
NOT Y)”, and in some cases several rules are combined for simplicity of presentation
(e.g., those related to Attention Deficit Disorder). Dark green rules are highlighted to
indicate that they cover <4 training samples (and in many cases zero training samples)
in line with our findings in Section A.1.2 for this setting of hyperparameters.

with a UTI, the physician needs to choose between a range of antibiotics, with the

dual goals of (a) treating the infection, and (b) minimizing the use of broad-spectrum

antibiotics, which are more likely to select for drug-resistant strains of bacteria.

In this context, we might be interested in evaluating a range of potential treatment

policies. For our purposes, we will use a pre-defined policy: The clinical guidelines

published by the Infectious Disease Society of America (IDSA) for treatment of

uncomplicated UTIs in female patients (Gupta et al., 2011). Using the policy evaluation

formulation of ℬ𝜖(𝜋), we will apply OverRule to a conservative interpretation of the

IDSA guidelines, using data curated from the Electronic Medical Record (EMR) of

two academic medical centers.
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Proc: Musculoskeletal

Rule B.1 (19.0%)

Overlap rules 𝓑

Proc: Nervous

and ¬ Proc: Maternity

OR Rule B.2 (11.6%)

Male

and Age ≥ 51 years

and ¬ Hist: Abdominal pain: unspecified site

and ¬ Proc: Male Genital

OR Rule B.3 (10.4%)

Male

and Proc: Cardiovascular

and ¬ Proc: Male Genital

OR Rule B.4 (5.4%)

Male

and Hist: Lumbago

OR Rule B.5 (4.0%)

Age ≥ 44 years

and Hist: Lumbago

OR Rule B.6 (6.7%)

Age ≥ 44 years

and Hist: Cervicalgia

OR Rule B.7 (4.1%)

Age ≥ 44 years

and Proc: Integumentary

OR Rule B.8 (2.1%)

Age ≥ 38 years

and Proc: Respiratory

OR Rule B.9 (1.4%)

Hist: Thoracic or lumbosacral neuritis or radiculitis

and ¬ Proc: Maternity

OR Rule B.10 (4.1%)

Hist: Degeneration of cervical intervertebral disc

and ¬ Proc: Maternity

OR Rule B.11 (4.1%)

Hist: Lumbosacral spondylosis w/o myelopathy

OR Rule B.12 (3.3%)

Figure A-5: Overlap rules, where the percentage next to each rule indicates the
percentage of the dataset that is covered by that rule. Collectively, these rules cover
36% of the held-out datapoints.

The official guidelines discuss the importance of patient and population level risk

factors in predicting resistance, and include some factors that we do not observe in

our data (such as drug allergies). In order to characterize the guideline explicitly as a

policy that we can evaluate in our dataset, we used the following interpretation:

• Choose the first-line agent, either Nitrofurantoin (NIT) or Trimethoprim/Sulfamethoxazole

(SXT), to which the patient did not have previous antibiotic exposure or resis-

tance in the prior 90 days. Additionally, if local rates of resistance to SXT are

≥ 20% in the prior 30-90 days, then avoid prescription of SXT.

• If neither of the first-line agents are indicated, then prescribe Ciprofloxacin

(CIP), a second-line agent.

Experimental details From our data set, we selected all patients from 2007–2017

which had a UTI, and were prescribed one of the four most common antibiotics: NIT,
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SXT, CIP, or Levofloxacin (LVX). Features include demographics (race, gender, age,

and veteran status), comorbidities observed in the past 90 days, information about

previous infections (organism, antibiotics given, and resistance profile), hospital ward

(inpatient, outpatient, ER, and ICU), and indicators for pregnancy and nursing home

residence in the past 90 days. The local rates of resistance (for each hospital ward)

are given over the past 30–90 days, and used at the patient level as a feature, as well

as an input to the decision of the guidelines.

We preprocess our data first, removing any binary feature with a prevalence of less than

0.1%, and any associated subject: This results in the removal of 48 binary features

with less than 0.1% prevalence and 888 corresponding subjects. This leaves a total of

156 (150 binary, 6 continuous) features and 64593 subjects. Detail on all remaining

features are given in Table A.7. For the purposes of running our algorithm, we convert

all continuous variables into binary variables by using indicator functions for deciles.

We then characterize the support set 𝒮𝛼 as described in the corresponding chapter of

this thesis, using a DNF formulation, along with 𝛼 = 0.95, 𝜆0 = 0.01, 𝜆1 = 0. Using the

data points which fall into the support set, we then estimate the propensity 𝑝(𝑡|𝑥) of

prescribing each of the four drugs using a random forest classifier, with hyperparameter

selection done using 5-fold cross-validation on 80% of the remaining cohort used as

a training set, over the following parameter grid: Number of estimators ∈ [100, 500],

Minimum samples per leaf (as fraction of total) ∈ [0.005, 0.01, 0.02]. The resulting

calibration curves for each antibiotic are given in Figure A-6, using the remaining

held-out 20% of the data. Using these propensity scores, we apply the procedure

described in Section A.2 to estimate the region of strict coverage, ℬ̂
𝜖
(𝜋) using Boolean

rules, and the resulting rules are given in Figure A-7. For this stage, we used a DNF

formulation and hyperparameters of 𝛽 = 0.9, 𝜆0 = 0.03, 𝜆1 = 0.

Clinical Validity / Interpretation Towards understanding the clinical validity of

these rules, we interviewed a clinician who specialises in infectious diseases. First, we

asked them, based on the available features, which they would expect to differentiate
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Figure A-6: Calibration curves for each antibiotic, using 20 evenly spaced bins in the
range [0, 1]. Numbers indicate the number of samples, and are given when when the
number of samples in a bin is less than 0.5% of the total. The cutoff is a reminder
that 𝜖 = 0.1 in this experiment: For any subject with covariates 𝑥, the propensity must
be above this cutoff for every treatment under the target policy (i.e., for all 𝑡 such that
𝜋(𝑡|𝑥) > 0) for them to be included in the coverage region.

between subjects for whom the policy is or is not followed. They noted that the

guidelines are designed for uncomplicated cases: In particular, patients who have a

Foley catheter (a catheter used to drain urine from the bladder) are not covered under

these guidelines, because infections in these patients tend to be more complex (e.g.,

the infection could have been introduced by the catheter itself). The use of the Foley
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Rule S.1 (99.0%):

Previous Resistance:

¬Amikacin

and ¬ Ertapenem

and ¬ Linezolid

and ¬ Meropenem

and ¬ Nalidixic Acid

and Previous Prescription:

¬Amikacin

and ¬ Daptomycin

and ¬ Tetracycline Metronidazole

and ¬ Trimethoprim

and Previous Infections:

¬ Morganella

or Rule B.3 (3.6%):

Previous Resistance:

Nitrofurantoin

or Rule B.2 (58.4%):

Female

and Location of care:

Outpatient

and ¬ Inpatient

Rule B.1 (27.3%):

Age < 41 years 

and Female

and Location of care

¬ Intensive Care Unit (ICU)

and Secondary infection sites

¬ Bloodstream

and Medical History:

¬ Congestive Heart Failure

and ¬ Fluid/Electrolyte Disorders

and ¬ Metastatic Cancer

and ¬ Pulmonary Circ. Disorders

and Previous Prescription:

¬ Imipenem

and ¬ Posaconazole

and Previous Resistance:

¬ Streptomycin (synergistic)

and Previous Medical Care:

¬ Mechanical Ventilation

and ¬ Nursing Home

𝒪 = S.1 ∧ (B.1 ∨ B.2 ∨ B.3)

Support rules 𝓢 Propensity overlap rules 𝓑

Figure A-7: OverRule description of the coverage region for policy evaluation of the
clinical guidelines. Beside each rule we give the percentage of subjects that are covered
by the rule in the test set. Overall, the rules for �̂� cover 65.4% of the data points in
the support region (compared to the 71% of points labelled by our base estimator), and
they have an balanced accuracy of 0.96 versus the base estimator.

catheter is common during intensive care (e.g., in the ICU), so complex hospitalized

patients are less likely to be treated according to the guidelines.

With that in mind, they reviewed the available features and noted the following:

(i) While UTIs are common for women, they are rare for men; Men with UTIs tend to

be more complicated cases, because it is indicative of deeper abnormalities. Similarly,

pregnant women are excluded from the guidelines. (ii) Of the comorbidities given,

none of them should directly disqualify patients from the guidelines, except potentially

for complicated diabetes. (iii) Prior organisms / resistance / prescriptions should

not directly disqualify patients from the guidelines, though they will influence the

type of antibiotic given. In particular, if a patient has had previous resistance to an

antibiotic, they are unlikely to be prescribed it again. (iv) The previous procedures

given (with the exception of surgery) are associated with ICU patients. For instance,
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mechanical ventilation and parenteral nutrition are exclusive to the ICU, and those

patients likely have a Foley catheter as well. Surgery is too broad of a category to

draw any conclusions. (v) In terms of locations besides the ICU, patients who are

admitted to the hospital and who are on intravenous (IV) antibiotics already will be

treated differently. The guidelines are focused on oral antibiotics, whereas if an IV

already exists, additional IV antibiotics are likely to be given instead.

Having discussed these points first, we then showed them the rules learned by the

OverRule algorithm, and asked for their interpretation, as well as for any critiques of

the rules based on their clinical knowledge. Their reaction to each of the rules was as

follows:

• Rule B.1: This appears to correspond to a relatively straightforward young

inpatient female (given that Rule B.2 covers all outpatient females). In particular,

it rules out ICU patients directly, as well as those with recent mechanical

ventilation, which would indicate a recent ICU stay. It also rules out patients

with current bloodstream infections, and those who had previously been tested

for (and found to be) resistance to Streptomycin (synergistic): This is only

tested for in the context of bloodstream infections by enterococcus, and would

be an indicator of previous bloodstream infections. Imipenem is an IV antibiotic

only given in inpatient settings, and posaconazole is an antifungal used in bone

marrow transplant patients. Patients who are both young and in a nursing

home tend to be more complex, e.g., they may be paralysed or otherwise unable

to perform activities independently. Finally, the excluded comorbidities are

less intuitive, because some of them (e.g., congestive heart failure) manifest

with a range of severity: For patients with controlled congestive heart failure,

this is not a contraindication for following the guidelines, but if they are fully

decompensated, then they would likely be on a Foley catheter.

• Rule B.2: This concisely describes the most common manifestation of UTI and

the set of patients who are most likely to be treated according to the guidelines3.

3Note that outpatient and “not inpatient” can appear in the same rule without being redundant,
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• Rule B.3: The conjecture is that this represents patients who have had an

uncomplicated UTI in the past, since patients are usually tested for the antibiotics

under consideration by a physician, and since nitrofurantoin is one of the first-line

treatments for uncomplicated UTIs.

From a quantitative perspective, we compared the learned region with an explicitly

constructed cohort of patients whose inclusion criteria were explicitly designed to

make them eligible for application of the IDSA guidelines. In particular, we defined

this cohort as including non-pregnant women between the ages of 18 to 55 years of

age with no record of genitourinary surgery or instrumentation, immunosuppression,

indwelling catheters, or neurologic dysfunction in the preceding 90 days. There were

14k of these patients, 21% of the total.

In relationship to this conservative subset, the learned region (covering 42k patients,

64% of total) covers 96% of the explicitly constructed cohort, while also demonstrating

that a broader set of patients are treated according to these guidelines in practice.

A.4 Theoretical Results on Regularized Minimum-Volume

Boolean Rules

A.4.1 Bounds on minimum volume

In this subsection, we derive lower bounds on the volume of optimal DNF Boolean

rules in problem (3.5).

First we obtain an expression for the normalized volume of a clause in a DNF (we use

the terms clause and conjunction interchangeably in the case of a DNF). We express

the domain 𝒳 as the Cartesian product 𝒳1 × · · · × 𝒳𝑑. A DNF rule with 𝐾 clauses 𝑎𝑘

because multiple specimens collected on the same day for the same patient are collapsed into a single
subject.
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is written as

𝑟(𝑥) =
𝐾⋁︁
𝑘=1

𝑎𝑘(𝑥) =
𝐾⋁︁
𝑘=1

⋀︁
𝑗∈𝒥𝑘

(𝑥𝑗 ∈ 𝒮𝑗𝑘) , (A.6)

where 𝒥𝑘 is the set of covariates participating in clause 𝑘, and each 𝑥𝑗 ∈ 𝒮𝑗𝑘 ⊆ 𝒳𝑗 is a

subset membership condition on an individual covariate. Examples of such conditions

are (Age ≥ 30) for a continuous-valued covariate and (Sex = Female) for a discrete-

valued one. For 𝑗 /∈ 𝒥𝑘, it is understood that 𝑥𝑗 ∈ 𝒳𝑗 , i.e. there is no restriction on 𝑥𝑗 .

The volume of clause 𝑎𝑘 is then given by the product

𝑉 (𝑎𝑘) =
∏︁
𝑗∈𝒥𝑘

|𝒮𝑗𝑘|
∏︁
𝑗 /∈𝒥𝑘

|𝒳𝑗|,

where |𝒮𝑗𝑘| is the length of subset 𝒮𝑗𝑘 for a continuous covariate 𝑗 or the cardinality

of 𝒮𝑗𝑘 for a discrete covariate, and similarly for |𝒳𝑗|. Likewise, the volume of 𝒳 is∏︀𝑑
𝑗=1|𝒳𝑗|, and the normalized volume of 𝑎𝑘 is therefore

𝑉 (𝑎𝑘) =
∏︁
𝑗∈𝒥𝑘

𝑓𝑗𝑘, 𝑓𝑗𝑘 =
|𝒮𝑗𝑘|
|𝒳𝑗|

∈ [0, 1]. (A.7)

We define 𝑝𝑘 = |𝒥𝑘| to be the degree of conjunction 𝑘.

Proposition A.2. Assume that the regularization 𝑅(𝑟) follows (3.6). Then in any

optimal solution to (3.5), all clauses 𝑎𝑘 of degree 𝑝𝑘 have normalized volume satisfying

𝑉 (𝑎𝑘)
(𝑝𝑘−1)/𝑝𝑘 − 𝑉 (𝑎𝑘) ≥ 𝜆1.

Proof. Suppose that rule 𝑟 with corresponding set 𝒞 is an optimal solution to (3.5).

Recalling the expansion in (A.6), we consider modifications to 𝑟 in which one condition

(𝑥𝑗 ∈ 𝒮𝑗𝑘) is removed from a clause 𝑎𝑘. The modified rule satisfies the mass constraint

𝑃 (𝒞) ≥ 𝛼 because it covers at least those points covered by 𝑟. From (A.7), the increase

in volume is at most 𝑉 (𝑎𝑘)((1/𝑓𝑗𝑘)− 1), with equality if none of the additional volume

is already covered by another clause in 𝑟, while the complexity penalty decreases by
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𝜆1. The change in objective value is thus bounded from above by

𝑉 (𝑎𝑘)

(︂
1

𝑓𝑗𝑘
− 1

)︂
− 𝜆1.

This upper bound must be non-negative as otherwise 𝑟 is not optimal. In particular,

for 𝑓𝑗𝑘 = max𝑗′∈𝒥𝑘
𝑓𝑗′𝑘 and all 𝑘 we have

𝑉 (𝑎𝑘)

(︂
1

max𝑗∈𝒥𝑘
𝑓𝑗𝑘
− 1

)︂
≥ 𝜆1.

Since (A.7) implies that max𝑗∈𝒥𝑘
𝑓𝑗𝑘 ≥ 𝑉 (𝑎𝑘)

1/𝑝𝑘 , the desired result follows.

For 𝑝 > 1, the function 𝑉
(𝑝−1)/𝑝 − 𝑉 is positive and concave on (0, 1) with roots at

0 and 1. For 𝜆1 > 0, the equation 𝑉
(𝑝−1)/𝑝 − 𝑉 = 𝜆1 therefore has either two roots,

0 < 𝑉 𝐿 < 𝑉 𝑈 < 1, which define an interval where the inequality 𝑉
(𝑝−1)/𝑝 − 𝑉 ≥ 𝜆1

is satisfied, or no roots if 𝜆1 is too large. We are interested primarily in the root 𝑉 𝐿

as a lower bound on volume. While 𝑉 𝐿 is not available in closed form for 𝑝 > 2, the

following corollary gives a simple expression that is a lower bound on 𝑉 𝐿.

Corollary A.1. Under the assumption in Proposition A.2, in any optimal solution to

(3.5), all clauses 𝑎𝑘 of degree 𝑝𝑘 > 1 have normalized volumes of at least 𝜆
𝑝𝑘/(𝑝𝑘−1)
1 .

Proof. Proposition A.2 implies 𝑉 (𝑎𝑘)
(𝑝𝑘−1)/𝑝𝑘 ≥ 𝜆1 after dropping −𝑉 (𝑎𝑘) from the

left-hand side.

Lastly, since the volume of a DNF rule is at least that of any of its clauses, we have

the following.

Corollary A.2. Under the assumption in Proposition A.2, any optimal solution to

(3.5) has normalized volume of at least 𝜆
𝑝max/(𝑝max−1)
1 , where 𝑝max = max𝑘 𝑝𝑘 is the

largest degree of its clauses.
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A.4.2 Bounds on the number of candidate DNF rules

The results in the previous subsection are necessary conditions of optimality for problem

(3.5). The implication is that in searching for optimal solutions to (3.5), we may restrict

the class C of DNF rules considered to those satisfying these necessary conditions.

In this subsection, we develop the consequences of this restriction, culminating in a

bound on |C|, the number of candidate DNF rules (Lemma A.5).

For simplicity, we assume in the following that all variables 𝑋𝑗 are binary-valued. An

extension to non-binary categorical variables and continuous variables (discretized using

interval conditions 𝑙𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑗) is likely possible with the additional complications of

accounting for the cardinalities of categorical variables and bounding the fractions 𝑓𝑗𝑘

associated with continuous variables.

First, the simplified lower bound on volume in Corollary A.1 implies an upper bound

on conjunction degree.

Lemma A.1. Assume that the regularization 𝑅(𝑟) follows (3.6) and that all variables

are binary. Then in any optimal solution to (3.5), the maximum degree of a conjunction

is 𝑝max := 1 + ⌊log2(1/𝜆1)⌋.

Proof. The normalized volume of a conjunction of degree 𝑝𝑘 is 2−𝑝𝑘 . Corollary A.1

then requires

2−𝑝𝑘 ≥ 𝜆
𝑝𝑘/(𝑝𝑘−1)
1 .

Taking logarithms and rearranging, we obtain

−1 ≥ 1

𝑝𝑘 − 1
log2 𝜆1,

𝑝𝑘 ≤ 1 + log2(1/𝜆1).

The right-hand side can be rounded down since 𝑝𝑘 is integer.

Given Lemma A.1, we may enumerate DNF rules satisfying the lemma according to

the numbers of clauses of degree 𝑝 = 1, . . . , 𝑝max that they possess. Denote by 𝐾𝑝 the
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number of clauses of degree 𝑝 and call K = (𝐾1, . . . ,𝐾𝑝max) the signature of a DNF

rule. The signatures of optimal DNF rules obey the following constraint.

Lemma A.2. Under the assumptions of Lemma A.1, the signature K = (𝐾1, . . . , 𝐾𝑝max)

of an optimal solution to (3.5) must satisfy

𝑝max∑︁
𝑝=1

𝐾𝑝(𝜆0 + 𝑝𝜆1) < 1. (A.8)

Proof. From (3.6), the complexity penalty of a solution with 𝐾𝑝 clauses of degree 𝑝,

𝑝 = 1, . . . , 𝑝max is given by the left-hand side of (A.8). For a solution to be optimal, it

must have lower cost than the trivial “all true” rule, which has a normalized volume

of 1 and complexity penalty of 0. In particular, the complexity penalty must be less

than 1.

Let Δ denote the set of signatures that satisfy (A.8), and for K ∈ Δ, let C(K) be the

set of DNF rules with signature K. The number of DNF rules satisfying the necessary

conditions of optimality in Lemmas A.1 and A.2 can be bounded as follows:

|C| =
∑︁
K∈Δ

|C(K)| ≤ |Δ|max
K∈Δ

|C(K)|. (A.9)

The next two lemmas provide upper bounds on the two right-hand side factors in

(A.9).

Lemma A.3. The number of signatures satisfying (A.8) is bounded as

|Δ| ≤ 2

(︂
1

𝜆1

)︂𝑝max

.

Proof. For simplicity, we consider a superset Δ0 ⊇ Δ obtained by dropping 𝜆0 from

(A.8), i.e.
𝑝max∑︁
𝑝=1

𝑝𝜆1𝐾𝑝 ≤ 1. (A.10)

Condition (A.10) together with the implicit non-negativity constraints 𝐾𝑝 ≥ 0, 𝑝 =

1, . . . , 𝑝max define a simplex in 𝑝max dimensions. Bounding the number of signatures
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in Δ0 is thus equivalent to bounding the number of non-negative integer points in this

simplex. This problem has been studied extensively by mathematicians. Applying

e.g. (Yau and Zhang, 2006, eq. (1.5)), we have

|Δ0| ≤
1

𝑝max!

𝑝max∏︁
𝑝=1

1

𝑝𝜆1

(︃
1 +

𝑝max∑︁
𝑝=1

𝑝𝜆1

)︃𝑝max

=
1(︀

𝑝max!
)︀2 (︂ 1

𝜆1

)︂𝑝max
(︂
1 +

𝑝max(𝑝max + 1)𝜆1

2

)︂𝑝max

≤
(︂

1

𝜆1

)︂𝑝max (1 + 𝑝max(𝑝max + 1)2−𝑝max)
𝑝max(︀

𝑝max!
)︀2⏟  ⏞  

𝐹 (𝑝max)

,

where the last inequality is obtained by using the definition of 𝑝max in Lemma A.1 to

bound 𝜆1/2 ≤ 2−𝑝max .

To complete the proof, we bound the function 𝐹 (𝑝max) from above. The numerator of

𝐹 (𝑝max) converges to 1 as 𝑝max →∞, as seen by taking its logarithm and bounding it:

𝑝max log
(︀
1 + 𝑝max(𝑝max + 1)2−𝑝max

)︀
≤ 𝑝2max(𝑝max + 1)2−𝑝max → 0 as 𝑝max →∞.

Thus 𝐹 (𝑝max) decreases to zero as 𝑝max increases. Numerical evaluation shows that

𝐹 (𝑝max) attains a maximum value of 2 at 𝑝max = 1.

Lemma A.4. The maximum number of DNF rules with a given signature K ∈ Δ is

bounded as

max
K∈Δ

|C(K)| < (2𝑑)1/𝜆1 .

Proof. The number of conjunctions of degree 𝑝 is
(︀
𝑑
𝑝

)︀
2𝑝, where the factor of 2𝑝 is due to

there being two choices of conditions on each of the 𝑝 selected variables. The number

of DNF rules with signature K is therefore

|C(K)| =
𝑝max∏︁
𝑝=1

(︂(︀𝑑
𝑝

)︀
2𝑝

𝐾𝑝

)︂
<

𝑝max∏︁
𝑝=1

(︁(︀
𝑑
𝑝

)︀
2𝑝
)︁𝐾𝑝

𝐾𝑝!
.
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Taking logarithms, we obtain

max
K∈Δ

log|C(K)| <

max
K

𝑝max∑︁
𝑝=1

𝐾𝑝 log

(︂(︂
𝑑

𝑝

)︂
2𝑝
)︂
− log(𝐾𝑝!)

s.t.

𝑝max∑︁
𝑝=1

𝐾𝑝(𝜆0 + 𝑝𝜆1) ≤ 1. (A.11)

For simplicity, we drop the nonlinear term − log(𝐾𝑝!) ≤ 0. The right-hand side of

(A.11) then becomes a maximization of a linear function over a simplex. The maximum

value is given by

max
𝑝=1,...,𝑝max

log
(︁(︀

𝑑
𝑝

)︀
2𝑝
)︁

𝜆0 + 𝑝𝜆1

(A.12)

(attained by setting 𝐾𝑝* = 1/(𝜆0 + 𝑝*𝜆1) for a maximizing value 𝑝* and 𝐾𝑝 = 0

otherwise). Again for simplicity, we further bound (A.12) from above by dropping 𝜆0

from the denominator, resulting in

max
K∈Δ

log|C(K)| < 1

𝜆1

max
𝑝=1,...,𝑝max

1

𝑝
log

(︂
𝑑

𝑝

)︂
+ log 2

(otherwise (A.12) may require solving a transcendental equation). Since log
(︀
𝑑
𝑝

)︀
in-

creases sublinearly with 𝑝, the maximum occurs at 𝑝 = 1, yielding the desired

result.

By combining (A.9), Lemmas A.3 and A.4, we obtain the desired bound on the number

of DNF rules satisfying the optimality conditions in Lemmas A.1 and A.2.

Lemma A.5. Under the assumptions of Lemma A.1, the number of DNF rules satisfying

the necessary conditions of optimality in Lemmas A.1 and A.2 is bounded as

|C| < 2(2𝑑)1/𝜆1

(︂
1

𝜆1

)︂𝑝max

.
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A.4.3 Proof of Theorem 3.1

We prove the theorem in two steps, first relating the empirical estimator in (3.7) to a

problem intermediate between (3.5) and (3.7),

𝒮* := argmin
𝒞

𝑄(𝒞) := 𝑉 (𝒞) +𝑅(𝒞)

subject to
∑︁
𝑖∈ℐ

1[𝑥𝑖 ∈ 𝒞] ≥ 𝛼𝑚,
(A.13)

and then relating this intermediate problem (A.13) to (3.5). Problem (A.13) has

the same regularized volume objective as (3.5) but with the empirical probability

constraint of (3.7).

For the first step, let 𝑉 (𝒞) denote the empirical volume in (3.7) (i.e. the first term

in the objective function). As noted in Section 3.4.1, 𝑉 (𝒞) is a scaled binomial

random variable with 𝑛 trials and mean 𝑉 (𝒞). Hoeffding’s inequality thus provides

the following tail bound:

Pr
(︀⃒⃒
𝑉 (𝒞)− 𝑉 (𝒞)

⃒⃒
> 𝜖𝑛

)︀
≤ 2𝑒−2𝑛𝜖2𝑛 .

Defining �̂�(𝒞) = 𝑉 (𝒞)+𝑅(𝒞) and recalling that 𝑄(𝒞) = 𝑉 (𝒞)+𝑅(𝒞), the same bound

holds for the difference �̂�(𝒞)−𝑄(𝒞). Taking the union bound over the hypothesis

class C yields

Pr
(︀
∃𝒞 ∈ C :

⃒⃒
�̂�(𝒞)−𝑄(𝒞)

⃒⃒
> 𝜖𝑛

)︀
≤ 2|C|𝑒−2𝑛𝜖2𝑛 . (A.14)

Assuming that the event in (A.14) is not true, we obtain the following sequence of

bounds, where the second inequality is due to the optimality of �̂� in (3.7):

𝑄(�̂�) ≤ �̂�(�̂�) + 𝜖𝑛 ≤ �̂�(𝒮*) + 𝜖𝑛 ≤ 𝑄(𝒮*) + 2𝜖𝑛. (A.15)

For this to hold with probability at least 1− 𝛿, we set 𝛿 equal to the right-hand side

of (A.14) to obtain

𝜖𝑛 =

√︂
log(2|C|/𝛿)

2𝑛
. (A.16)
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For the second step, we observe that the empirical probability �̂� (𝒞) = 1
𝑚

∑︀
𝑖∈ℐ 1[𝑥𝑖 ∈ 𝒞]

is also a scaled binomial random variable, this time with 𝑚 trials and mean 𝑃 (𝒞). We

thus have a similar bound as in (A.14),

Pr
(︀
∃𝒞 ∈ C :

⃒⃒
�̂� (𝒞)− 𝑃 (𝒞)

⃒⃒
> 𝜖𝑚

)︀
≤ 2|C|𝑒−2𝑚𝜖2𝑚 ,

and setting the right-hand side equal to 𝛿 yields the same expression for 𝜖𝑚 as in

(A.16) with 𝑛 replaced by 𝑚. We then use Theorem 3 and Corollary 12 in (Scott and

Nowak, 2006) to conclude that with probability at least 1− 𝛿,

𝑄(𝒮*) ≤ 𝑞*(𝛼 + 𝜖𝑚) and 𝑃 (𝒮*) ≥ 𝛼− 𝜖𝑚.

Indeed, since �̂� ∈ C and satisfies the constraint �̂� (�̂�) ≥ 𝛼 as well, the above may be

changed to

𝑄(𝒮*) ≤ 𝑞*(𝛼 + 𝜖𝑚) and 𝑃 (�̂�) ≥ 𝛼− 𝜖𝑚. (A.17)

Combining (A.15) and (A.17) gives

𝑄(�̂�) ≤ 𝑞*(𝛼 + 𝜖𝑚) + 2𝜖𝑛 and 𝑃 (�̂�) ≥ 𝛼− 𝜖𝑚

with probability at least 1− 2𝛿.

Lastly, we use Lemma A.5 to bound 𝜖𝑛 from above by√︂
𝜆−1
1 log(2𝑑) + 𝑝max log 𝜆

−1
1 + log(4/𝛿)

2𝑛

and similarly for 𝜖𝑚.

A.5 Generalization of the product estimator

Below, we give a Theorem bounding the expected error of the two-stage estimate

�̂� = �̂� ∩ ℬ̂ as a function of the error of the base estimators �̂�, ℬ̃. This justifies the
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two-stage nature of our algorithm and motivates selecting hyperparameters for overlap

rules ℬ̂ based on the error with respect to the base estimator ℬ̃. Before we state the

result, we give a Lemma bounding the error of an estimator of a product of functions

in terms of estimators of the respective terms in the product.

Consider the task of predicting the binary deterministic label 𝑔(𝑋) = 𝑔1(𝑋)𝑔2(𝑋) by

approximating the product of estimators 𝑓1, 𝑓2 of 𝑔1, 𝑔2. Now, let 𝑅𝑔(𝑓) denote the

expected zero-one loss of 𝑓 with respect to 𝑔 over 𝑝,

𝑅𝑔(𝑓) = E𝑋∼𝑝[1[𝑓(𝑥) ̸= 𝑔(𝑥)]] .

Lemma A.6. For 𝑓1 and 𝑓2 such that 𝑅𝑔1(𝑓1) ≤ 𝐴 ≤ min{𝑝(𝑓2(𝑋) = 1), 𝑝(𝑔2(𝑋) = 1)},

𝑅𝑔2(𝑓2) ≤ 𝐵 ≤ min{𝑝(𝑓1(𝑋) = 1), 𝑝(𝑔1(𝑋) = 1)} and max{𝐴+𝐵,𝐶} ≤ 1/2, let 𝑓(𝑋)

approximate 𝑓1(𝑋)𝑓2(𝑋) and assume that 𝑅𝑓1𝑓2(𝑓) ≤ 𝐶. Then,

𝑅𝑔(𝑓) ≤ 𝐴+𝐵 + 𝐶

Proof. For convenience, let 𝑓1 = 𝑓1(𝑋), 𝑔1 = 𝑔1(𝑋), et cetera, and let 𝛾 = 𝑝(𝑔(𝑋) = 1).

𝑅𝑔(𝑓1𝑓2) = 𝑝(𝑓1𝑓2 ̸= 𝑔1𝑔2)

= 𝑝(𝑓1 = 𝑓2 = 1 ∧ (𝑔1 = 0 ∨ 𝑔2 = 0))

+ 𝑝((𝑓1 = 0 ∨ 𝑓2 = 0) ∧ 𝑔1 = 𝑔2 = 1)

≤ 𝑝(𝑓1 = 𝑓2 = 1 ∧ 𝑔1 = 0) + 𝑝(𝑓1 = 𝑓2 = 1 ∧ 𝑔2 = 0)

+ 𝑝(𝑔1 = 𝑔2 = 1 ∧ 𝑓1 = 0) + 𝑝(𝑔1 = 𝑔2 = 1 ∧ 𝑓2 = 0)

≤ min{𝑝(ℎ2 = 1), 𝑝(𝑓1 = 1 ∧ 𝑔1 = 0)}

+min{𝑝(𝑓1 = 1), 𝑝(𝑓2 = 1 ∧ 𝑔2 = 0)}

+min{𝑝(𝑔2 = 1), 𝑝(𝑔1 = 1 ∧ 𝑓1 = 0)}

+min{𝑝(𝑔1 = 1), 𝑝(𝑔2 = 1 ∧ 𝑓2 = 0)}

≤ 𝐴+𝐵
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In the first inequality, we use the standard Frechet inequalities. In the second and

third, we use the assumptions in the statement. Alternatively, we could arrive at the

same result by assuming that ℎ2 and (𝑓1, ℎ1) as well as ℎ1 and (𝑓2, ℎ2) are independent

and decomposing the joint distributions. This could be guaranteed by sample splitting.

We could then remove the assumption that the marginal probability of the label is

larger than the error. In either case,

𝑅𝑔(𝑓) = 𝑝(𝑓 = 𝑓1𝑓2 ∧ 𝑓1𝑓2 ̸= 𝑔)

+ 𝑝(𝑓 ̸= 𝑓1𝑓2 ∧ 𝑓1𝑓2 = 𝑔)

≤ min{𝑝(𝑓 = 𝑓1𝑓2), 𝑝(𝑓1𝑓2 ̸= 𝑔)}

+min{𝑝(𝑓 ̸= 𝑓1𝑓2), 𝑝(𝑓1𝑓2 = 𝑔)}

= 𝑝(𝑓1𝑓2 ̸= 𝑔) + 𝑝(𝑓 ̸= 𝑓1𝑓2)

≤ 𝐴+𝐵 + 𝐶 .

We now state our result. First, we view membership in �̂� = �̂� ∩ ℬ̂ as given by an

instance of the hypothesis class ℱ = {𝑓(𝑥) := 1[𝑥 ∈ �̂�]ℎ(𝑥); ℎ ∈ ℋ}, for some function

family ℋ. Then, let 𝑅𝑔(𝑓) = E𝑋∼𝑝[1[𝑓(𝑥) ̸= 𝑔(𝑥)]] denote the expected risk of 𝑓 with

respect to 𝑔 over 𝑝, and �̂�𝑔(𝑓) =
1
𝑚

∑︀𝑚
𝑖=1 1[𝑓(𝑥𝑖) ̸= 𝑔(𝑥𝑖)] the empirical risk.

Theorem A.1. Given are classifiers �̂�, �̃� of support membership 𝑠 and propensity

boundedness 𝑏, with overlap defined as 𝑜(𝑥) = 𝑠(𝑥)𝑏(𝑥), such that for all 𝑛 > 𝑁 it

holds for 𝐴𝑛, 𝐶𝑛 ∈ �̃�(1/
√
𝑛) with max{𝐴𝑛, 𝐶𝑛} ≤ 1/4 that 𝑅𝑠(�̂�) ≤ 𝐴𝑛, 𝑅𝑏(�̃�) ≤ 𝐶𝑛.

Then, for any function �̂� ∈ ℋ approximating �̂� · �̃�, with probability larger than 1− 𝛿,

𝑅𝑜(�̂�) ≤ �̂��̂�·�̃�(�̂�) +
𝐷ℱ ,𝛿,𝑛√

𝑛
+ �̃�

(︂
1√
𝑛

)︂
,

where 𝐷ℱ ,𝛿,𝑛 =
√︁

8𝑑(log 2𝑚
𝑑
+ 1) + 8 log 4

𝛿
, with 𝑑 the VC-dimension of ℱ and �̃� hides

logarithmic factors.
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Proof. From Lemma A.6 and assumptions, we have that

𝑅𝑜(�̂�) ≤ 𝑅�̂�·�̃�(�̂�) +𝑅𝑠(�̂�) +𝑅𝑏(�̃�) ≤ 𝑅�̂�·�̃�(�̂�) + �̃�
(︂

1√
𝑛

)︂
.

By applying standard VC-theory w.r.t. ℱ , we have our result.

Theorem A.1 bounds the generalization error of (e.g., Boolean rule) approximations of
√
𝑛-consistent base estimators. It may be generalized to other rates, but convergence

at some rate is necessary for consistency of the final estimator. Critically, the bias

incurred by the approximation is observable and may be traded off for interpretability.

Table A.6: Population averages for covariates in Opioids in order of difference between
the overlapping and non-overlapping set. DMME, MME and Duration are the medians
of daily MME, total MME and prescription duration days in each group.

Total DMME MME Duration

Total sample 35106 46 225 5

Male 9301 50 300 5

Female 25805 45 225 5

Age groups

<15 847 20 100 5

15-24 3334 45 200 5

25-34 9994 45 210 4

35-44 6820 46 225 5

45-54 6196 50 250 5

55-64 7915 50 300 5

>=65 0 0 0 0

Surgery type

Auditory 29 18 135 6

Cardiovascular 3633 45 270 5

Integumentary 1507 48 225 5

Mediastinum 54 47 300 5

Female genital 3913 48 225 5

Hemic 885 50 225 5

Respiratory 665 45 250 5
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Endocrine 214 45 200 5

Nervous 4350 60 375 6

Urinary 1476 45 225 5

Musculoskeletal 6678 60 450 7

Maternity 13553 45 200 4

Male genital 585 45 225 5

Year

2011 7547 45 225 5

2012 10743 46 225 5

2013 9651 50 225 5

2014 7165 45 225 5

Diagnosis history (until day before surgery)

Other specified gastritis: without mention of hemorrhage 491 42 225 5

Other ascites 233 45 225 5

Lumbosacral spondylosis without myelopathy 1135 60 400 6

Nausea with vomiting 1914 45 225 5

Other respiratory abnormalities 1935 45 225 5

Vomiting alone 765 45 200 5

Myalgia and myositis: unspecified 1522 50 250 5

Attention deficit disorder with hyperactivity 370 45 225 5

Attention deficit disorder without mention of hyperactivity 444 45 225 5

Depressive disorder: not elsewhere classified 2221 50 225 5

Dysthymic disorder 752 50 225 5

Tachycardia: unspecified 631 45 225 5

Degeneration of cervical intervertebral disc 904 56 337 6

Flatulence: eructation: and gas pain 427 45 225 5

Generalized anxiety disorder 833 45 225 5

Other symptoms referable to back 368 50 300 5

Cellulitis and abscess of leg: except foot 450 45 225 5

Constipation: unspecified 1136 45 225 5

Thoracic or lumbosacral neuritis or radiculitis: unspecified 1676 60 326 6

Anxiety state: unspecified 2205 50 225 5

Lumbago 4559 50 250 5

Abdominal pain: generalized 1607 45 225 5

Degeneration of lumbar or lumbosacral intervertebral disc 1542 60 388 6
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Other and unspecified noninfectious gastroenteritis and colitis 1254 45 225 5

Major depressive affective disorder: recurrent episode: moderate 507 45 225 5

Asthma: unspecified type: unspecified 2044 45 225 5

Arthrodesis status 178 60 450 7

Chest pain: unspecified 4701 45 225 5

Routine general medical examination at a health care facility 9529 50 225 5

Diarrhea 1714 50 225 5

Fitting and adjustment of vascular catheter 318 45 225 5

Hypopotassemia 721 45 225 5

Bariatric surgery status 302 40 200 5

Sprain of neck 816 50 225 5

Unspecified gastritis and gastroduodenitis: w/o mention of hemorrhage 960 45 225 5

Injury of face and neck 271 46 300 5

Backache: unspecified 2471 50 225 5

Unspecified septicemia 222 45 225 5

Acute pharyngitis 4219 45 225 5

Acute bronchitis 3311 46 225 5

Abdominal pain: other specified site 2890 45 225 5

Atrophic gastritis: without mention of hemorrhage 537 45 225 5

Cough 3946 45 225 5

Altered mental status 202 45 225 5

Cervicalgia 2758 50 250 5

Abdominal pain: unspecified site 6339 45 225 5

Other chronic pain 346 56 300 6

Headache 3514 45 225 5

Tobacco use disorder 1834 50 225 5

Other screening mammogram 5722 50 240 5

Observation and evaluation for other specified suspected conditions 337 45 225 5

Unspecified sinusitis (chronic) 1624 46 225 5

Rheumatoid arthritis 353 50 300 5

Brachial neuritis or radiculitis NOS 1147 50 300 5

Loss of weight 455 46 225 5

Hypersomnia with sleep apnea: unspecified 424 42 225 5

Insomnia: unspecified 968 50 225 5

Other malaise and fatigue 5178 46 225 5

Other injury of chest wall 210 50 300 5
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Dehydration 841 45 225 5

Acute respiratory failure 120 40 225 5

Table A.7: Population averages for the 156 features in the UTI cohort. Mean values
and total (for binary features) are given, and there are 64593 subjects in total.

Mean Total

Demographics

Age 55.1

Male 16.53% 10685

White 72.17% 46662

Veteran 4.61% 2981

Current Location

Outpatient 64.89% 41957

Emergency Room 15.69% 10142

Inpatient 17.26% 11159

Intensive Care Unit (ICU) 2.69% 1736

Local Resistance Rates (Past 30-90 days, at this location)

Trimethoprim/Sulfamethoxazole 18.61%

Nitrofurantoin 19.85%

Ciprofloxacin 22.70%

Levofloxacin 24.19%

Secondary Site of Infection

Skin / Soft Tissue 0.20% 132

Blood 1.59% 1031

Respiratory Tract 0.53% 341

Nasal or Rectal Swab 0.19% 124

Medical History (Past 90 Days)

Alcohol abuse 1.66% 1074

Deficiency anemia 2.84% 1837
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Cardiac arrhythmias 17.08% 11041

Blood loss anemia 0.49% 315

Congestive heart failure 10.16% 6571

Coagulopathy 3.81% 2466

Diabetes, uncomplicated 14.13% 9135

Diabetes, complicated 5.00% 3232

Depression 11.80% 7627

Drug abuse 1.72% 1114

Fluid and electrolyte disorders 13.84% 8946

AIDS/HIV 0.43% 281

Hypertension, uncomplicated 32.51% 21017

Hypertension, complicated 5.43% 3513

Hypothyroidism 7.86% 5085

Liver disease 4.36% 2822

Lymphoma 1.63% 1051

Metastatic cancer 5.50% 3559

Other neurological disorders 6.68% 4319

Obesity 6.70% 4332

Pulmonary circulation disorders 3.13% 2025

Peptic ulcer disease, excluding bleeding 0.61% 393

Peripheral vascular disorders 5.68% 3672

Paralysis 3.08% 1992

Psychoses 2.42% 1563

Chronic pulmonary disease 11.29% 7299

Renal 8.87% 5735

Rheumatoid arthritis / collagen vascular diseases 3.76% 2428

Solid tumor without metastasis 12.00% 7760

Valvular disease 7.79% 5034

Weight loss 3.59% 2319

Preganant 3.08% 1989

Previous Care (Past 90 days)
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Inpatient Stay 18.38% 11882

Nursing Home Stay 1.20% 779

Previous Procedures (Past 90 days)

Central Venous Catheder 5.27% 3410

Hemodialysis 0.66% 427

Mechanical Ventilation 5.74% 3714

Parenteral Nutrition 0.67% 434

Surgery 59.84% 38689

Previous Organisms (Past 90 days)

Citrobacter species 0.42% 270

Coagulate negative Staphylococcus species 1.15% 741

Enterobacter aerogenes 0.15% 95

Escherichia coli 7.82% 5057

Enterococcus species 2.66% 1718

Enterobacter cloacae 0.29% 186

Group B Streptococcus 0.17% 109

Klebsiella pneumoniae 2.02% 1307

Morganella species 0.11% 73

Pseudomonas aeruginosa 0.92% 594

Proteus species 0.69% 445

Staph aureus 1.55% 1003

Serratia species 0.22% 145

Previous Resistance, measured by culture (Last 90 Days)

Amoxicillin Clavulanate 2.34% 1511

Amikacin 0.10% 67

Ampicillin 7.44% 4808

Aztreonam 0.95% 616

Ceftazidime 0.30% 197

Cefazolin 9.22% 5962

Chlorampenicol 0.17% 111

Ciprofloxacin 4.62% 2984
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Clindamycin 0.97% 624

Ceftriaxone 1.24% 804

Doxycycline 0.39% 249

Ertapenem 0.14% 88

Erythromycin 3.71% 2399

Cefepime 0.54% 351

Cefoxitin 0.49% 319

Gentamicin 1.65% 1066

Gentamicin (Synergistic) 0.47% 307

Imipenem 0.47% 303

Levofloxacin 5.32% 3439

Linezolid 0.09% 58

Meropenem 0.13% 85

Moxifloxacin 0.86% 556

Nalidixic Acid 0.09% 60

Nitrofurantoin 4.06% 2628

Oxacillin 1.79% 1158

Penicillin 2.41% 1559

Piperacillin 0.62% 402

Polymyxin B 1.22% 790

Rifampin 0.80% 518

Ampicillin Sulbactam 1.63% 1056

Streptomycin (Synergistic) 0.23% 150

Trimethoprim Sulfamethoxazole 3.10% 2006

Tetracycline 5.33% 3443

Ticarcillin 0.24% 153

Tobramycin 0.31% 203

Piperacillin Tazobactam 0.53% 341

Vancomycin 0.92% 598

Previous Antibiotic Prescription (Last 90 Days)

Amikacin 0.09% 60
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Amoxicillin 2.47% 1596

Amoxicillin/Clavulanate 2.15% 1388

Amphotericin B 0.16% 102

Ampicillin/Sulbactam 0.34% 217

Azithromycin 2.86% 1847

Aztreonam 0.25% 159

Cefadroxil 0.15% 96

Cefazolin 4.87% 3150

Cefepime 2.30% 1489

Cefixime 0.26% 166

Cefotetan 0.18% 114

Cefoxitin 0.25% 161

Cefpodoxime 0.88% 570

Ceftazidime 0.73% 475

Ceftriaxone 2.75% 1775

Cefuroxime 0.24% 156

Cephalexin 2.31% 1496

Ciprofloxacin 11.09% 7170

Clarithromycin 0.35% 226

Clindamycin 1.84% 1187

Daptomycin 0.10% 63

Dicloxacillin 0.19% 126

Doxycycline 1.73% 1119

Ertapenem 0.22% 140

Erythromycin 0.39% 249

Fluconazole 3.56% 2301

Fosfomycin 0.36% 232

Gentamicin 0.94% 607

Imipenem 0.33% 216

Levofloxacin 5.94% 3838

Linezolid 0.73% 470

Meropenem 0.40% 256
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Metronidazole 4.49% 2906

Micafungin 0.24% 154

Minocycline 0.20% 129

Moxifloxacin 0.27% 174

Nafcillin 0.24% 157

Nitrofurantoin 2.73% 1767

Norfloxacin 4.25% 2749

Penicillin 0.31% 199

Piperacillin 0.41% 268

Piperacillin/Tazobactam 0.23% 148

Polymyxin B 0.52% 333

Posaconazole 0.18% 118

Tetracycline Metronidazole 0.09% 59

Trimethoprim 0.12% 79

Trimethoprim/Sulfamethoxazole 3.96% 2558

Vancomycin 8.80% 5690

Vancomycin Gentamicin 3.35% 2165
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Appendix B

Appendix for Chapter 4

B.1 When can biased estimators be falsified?

As discussed in Examples 4.2 and 4.3, we imagine that observational estimators differ

in a few possible ways. They may represent the same identification strategy applied to

different datasets, different identification strategies applied to the same dataset (e.g.,

different choices of confounders), or some combination of the two.

Assumption 4.3 states that there exists a consistent and asymptotically normal obser-

vational estimator for 𝜏 , as defined in Def. 4.1. This is a fundamental assumption in

our work, and so we build additional intuition for when we might expect this condition

to hold, and when we might be able to falsify this assumption. In this section, we

give basic intuition regarding patterns of confounding, and in Section B.2, we discuss

issues of transportability.

In Example B.1.1, we give a simple example where the causal graph is consistent

across two subgroups, and where an estimator must control for all confounders to get

consistent estimates of the GATE in either subgroup. In this setting, falsification is

possible. On the other hand, in Example B.1.2, we give a counterexample, where there

are multiple estimators that can deliver consistent estimates of the GATE on the RCT

subpopulation, but only one provides consistent estimates across all subpopulations.
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𝐴 𝑌

𝑍1𝑍2

𝑋

(a)

𝐴𝑋 = 0 𝑌

𝑍

𝐴𝑋 = 1 𝑌

𝑍

(b)

Figure B-1: Example B.1.1 is depicted in (a), and Example B.1.2 in (b)

Example B.1.1 (Consistent confounding across subgroups). In the causal graph shown

in Figure B-1a, there are two sets of confounders, 𝑍1, 𝑍2, a binary treatment variable

𝐴, a binary subgroup variable 𝑋, and the outcome 𝑌 . We assume a linear outcome

model, whereby 𝐸[𝑌 |𝑋,𝑍1, 𝑍2, 𝐴] = 𝛼 + 𝛽𝑋 + 𝛾1𝐴𝑋 + 𝛾2𝐴(1−𝑋) + 𝛿1𝑍1 + 𝛿2𝑍2.

Note that the true group average treatment effect (GATE) for the two subgroups

are, GATE(𝑋 = 0) = 𝛾2; GATE(𝑋 = 1) = 𝛾1. It is straightforward to show that

not conditioning on the full set of confounders will lead to biased GATE estimates

for both subgroups, whereas conditioning on both 𝑍1 and 𝑍2 will lead to consistent

estimates for both subgroups.

Example B.1.2 (Selective confounding by subgroup). Let there be two subgroups,

𝑋 = 0 and 𝑋 = 1, with the former having support in both RCT and observational

studies and the latter having support in only observational data. Now, suppose we

had the following treatment assignment mechanism, 𝑝(𝐴 = 1|𝑋,𝑍) = 𝑓(𝑍) · 1(𝑋 =

1) + 𝑐 · 1(𝑋 = 0), where 𝑍 is a set of confounders, 𝑓 is a nonlinear function of 𝑍, and

𝑐 is a constant. A candidate estimator that does not condition on 𝑍 would be able

to get consistent estimates for the validation effect but not the extrapolated effect.

On the other hand, conditioning on 𝑍 would allow for consistent estimates on both

validation and extrapolated effects.
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B.2 Conditions for valid observational / randomized com-

parisons

Recall that we had defined the group average treatment effect (GATE) as follows in

Equation (4.1)

𝜏𝑖 :=

⎧⎪⎨⎪⎩E[𝑌1 − 𝑌0 | 𝐺 = 𝑖,𝐷 = 0], if 𝑖 ∈ ℐ𝑅

E[𝑌1 − 𝑌0 | 𝐺 = 𝑖,𝐷 = 1], if 𝑖 ∈ ℐ𝑂
, (B.1)

and refer to 𝜏𝑖 for 𝑖 ∈ ℐ𝑅 as a validation effect, and 𝜏𝑖 for 𝑖 ∈ ℐ𝑂 as an extrapolated

effect. In this section, we discuss sufficient conditions under which these causal

effects are identifiable from observational data drawn from a distribution 𝐷 = 𝑘, and

give examples of doubly-robust estimators of these quantities. These assumptions

cover both comparisons of the observational studies to the randomized trial (used for

validation), as well as the normalization of observational estimates (used for confidence

intervals on the extrapolated effects).

Our goal in presenting these results is to build intuition in this setting for when we

might expect a consistent observational estimator to exist across all groups. This is a

well-studied topic, often in the context of generalizing effect estimates from randomized

trials to other supported populations (e.g., all trial-eligible individuals). We primarily

make use of results in that literature to build intuition here, pointing the reader to

Degtiar and Rose (2021) for a recent review whose presentation we largely mirror,

with modifications to account for our notation.

B.2.1 Identification

First, we state standard assumptions under which the GATE in the observational

population for 𝐷 = 𝑘,

E[𝑌1 − 𝑌0 | 𝐺 = 𝑖,𝐷 = 𝑘], (B.2)

is identifiable from data in the dataset 𝐷 = 𝑘, with notation adapted to our setting.
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Assumption B.2.1. The following conditions hold for the distribution P(· | 𝐷 = 𝑘):

1. Conditional Exchangeability over 𝐴: 𝑌𝑎 ⊥⊥ 𝐴 | 𝑋,𝐷 = 𝑘 for all treatments 𝑎.

2. Positivity of Treatment Assignment : P(𝑋 = 𝑥 | 𝐷 = 𝑘) > 0 =⇒ P(𝐴 = 𝑎 |

𝑋 = 𝑥,𝐷 = 𝑘) > 0 for all 𝑎.

3. Consistency : 𝐴 = 𝑎 =⇒ 𝑌𝑎 = 𝑌

These causal assumptions ensure that the ATE and CATE can be identified from

observational data for the observational population and are standard in the causal

inference literature (Imbens and Rubin, 2015). In order to transport these estimates

to the RCT population (or from one observational dataset to another), we require

additional assumptions. Next, we give assumptions under which these estimates can

be transported to another population 𝐷 = 𝑘′, where in our case 𝑘′ ∈ {0, 1}.

Assumption B.2.2. Let 𝑘 correspond to a source population, and 𝑘′ correspond to the

target population. Conditioned on the event 𝐷 ∈ {𝑘, 𝑘′}, define the random variable

𝑆 = 1 if 𝐷 = 𝑘 and 𝑆 = 0 otherwise. Then let the following hold, on the distribution

P(· | 𝐷 ∈ {𝑘, 𝑘′}).

1. Conditional Exchangeability over 𝑆: 𝑌𝑎 ⊥⊥ 𝑆 | 𝑋 for all treatments 𝑎.

2. Positivity of Selection: P(𝑋 = 𝑥) > 0 =⇒ P(𝑆 = 1 | 𝑋 = 𝑥) > 0 almost surely

over 𝑋 for all 𝑎.

3. Consistency : 𝑆 = 𝑠 and 𝐴 = 𝑎 =⇒ 𝑌𝑎 = 𝑌

Here, we note that this introduces non-trivial additional assumptions. Most notably,

we require that the potential outcomes are independent of the dataset, given 𝑋. This

would be violated, for instance, if the distribution of unobservable effect modifiers

differs between different observational studies. As a result, we note that it is possible

for an observational study to fail to replicate the RCT results due to failures of

transportability (failure of Assumption B.2.2) even if it has “internal validity”, allowing
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for identification of the causal effect in the population 𝐷 = 𝑘. There also exists a

large body of work on identifying transportable causal effects via causal graphs (Pearl

and Bareinboim, 2011, 2014; Pearl, 2015).

B.2.2 Estimation of the ATE in the target population

Regarding estimation, Dahabreh et al. (2020) consider the problem of transporting

average treatment effects from randomized trials to observational studies, under

Assumption B.2.1 with 𝑘 = 0 and Assumption B.2.2 with 𝑘 = 0, 𝑘′ = 1. These

assumptions admit identification of the potential outcomes means as follows (see

Section 4.2 of Dahabreh et al. (2020))

E[𝑌𝑎 | 𝑆 = 0] = E[E[𝑌 | 𝑋,𝑆 = 1, 𝐴 = 𝑎] | 𝑆 = 0] (B.3)

where the outer expectations are over P(𝑋 | 𝑆 = 0), i.e., the covariate distribution of

the target population. Dahabreh et al. (2019) give a doubly robust estimator for the

statistical quantity on the right-hand side as the empirical expectation of the following

pseudo-outcome (see Equation A.13 of Dahabreh et al. (2020))

�̂�(𝑎) =
1

𝑛

𝑛∑︁
𝑖=1

𝑌 𝑎
𝑖 (𝜂, �̂�) (B.4)

where 𝑛 is the total samples in both the source 𝑆 = 1 and target 𝑆 = 0 samples, and

where

𝑌 𝑎
𝑖 (𝜂, �̂�) :=

1

�̂�

(︂
1 {𝑆𝑖 = 1, 𝐴𝑖 = 𝑎} · 1− �̂�(𝑋𝑖)

�̂�(𝑋𝑖)�̂�𝑎(𝑋𝑖)
· {𝑌𝑖 − 𝑔𝑎(𝑋𝑖)}+ (1− 𝑆𝑖)𝑔𝑎(𝑋𝑖)

)︂
.

(B.5)

In Equation (B.5), 𝜂 := (𝑔𝑎, �̂�𝑎, �̂�), and �̂� := 𝑛−1
∑︀𝑛

𝑖=1 1 {𝑆𝑖 = 0} is an estimate of

P(𝑆 = 0), �̂�𝑎(𝑋) is an estimate of the mean conditional outcome E[𝑌 | 𝐴 = 𝑎, 𝑆 = 1, 𝑋],

�̂�(𝑋) is an estimate of the selection probability P(𝑆 = 1 | 𝑋), and �̂�𝑎(𝑋) is an estimate

of the propensity score P(𝐴 = 𝑎 | 𝑆 = 1, 𝑋). Dahabreh et al. (2019) derives precise

339



asymptotic properties of this estimator, which is asymptotically normal and consistent

for the observational quantity on the right-hand side of Equation (B.3). In particular,

this estimator is doubly-robust in the sense that it is consistent if either �̂�(𝑋) or �̂�𝑎(𝑋) is

consistent, but requires consistency of �̂�𝑎(𝑋). It also enjoys the rate double-robustness

property, retaining consistency and asymptotic normality even if the estimators for

�̂�, 𝑔 converge at slower than parametric rates, and allows for the same cross-fitting

schemes used in the Double ML (Chernozhukov et al., 2018) literature for relaxing

Donsker conditions.

Note that the average treatment effect in this setting can be estimated by the following

contrast, which is similarly an empirical expectation of a pseudo-outcome

�̂�(1)− �̂�(0) =
1

𝑛

𝑛∑︁
𝑖=1

𝑌 1
𝑖 (𝜂, �̂�)− 𝑌 0

𝑖 (𝜂, �̂�) =
1

𝑛

𝑛∑︁
𝑖=1

𝑌𝑖(𝜂, �̂�), (B.6)

where 𝑌𝑖(𝜂, �̂�) := 𝑌 1
𝑖 (𝜂, �̂�)−𝑌 0

𝑖 (𝜂, �̂�). Furthermore, the variance of these estimates can

be estimated using either sandwich estimators from M-estimation theory (Stefanski

and Boos, 2002), or via bootstrap methods. We refer the reader to Sections 5.3, 5.4

and Appendix A.4 of (Dahabreh et al., 2020) for more details.

B.3 Estimation and comparison of GATE in semi-synthetic

experiments

In Sections 4.2.2 and B.2, we discuss several estimators for average treatment effects

(ATEs) that are known to be asymptotically normal, such as the double ML estimator

discussed in Example 4.2 or the doubly-robust estimator in Section B.2.

Given a fixed set of discrete subgroups, one could analyze each subgroup independently

and apply such estimators directly, since the ATE in each subgroup is precisely the

GATE. This would be a straightforward way to ensure that the same formal guarantees

hold regarding asymptotic normality. While this approach would be feasible in our
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experimental setting, due to the small number of groups, it is less practical in general,

especially with a larger number of groups, since information cannot be shared across

nuisance models such as 𝑔𝑎, �̂�𝑎, �̂� discussed in Section B.2.

In an effort to emulate a more realistic setting, we take a slightly different approach

in the semi-synthetic experiments. We draw inspiration from the double ML approach

given in Semenova and Chernozhukov (2021) for GATE estimation, while taking into

consideration the transportation of causal effects in the sense of Section B.2. Note

that in Semenova and Chernozhukov (2021), the required assumptions and proofs

for asymptotic normality of estimators are provided on a case-by-case basis, which

does not include our case with transportation. Therefore, in the following we will

briefly describe their approach, then show how we construct our GATE estimators

and provide the required assumptions for their asymptotic normality.

Semenova and Chernozhukov (2021) focuses on the setting where there exists some

pseudo-outcome / signal, 𝑌 (𝜂), and where one is interested in summarizing the

function, 𝜏(𝑥) = E[𝑌 (𝜂) | 𝑋 = 𝑥], with a linear regression function (in the simplest

case, a set of group indicators). When 𝑌 (𝜂) is the doubly-robust score (Robins et al.,

1994; Robins and Rotnitzky, 1995) (see Equation (B.11)), 𝜏(𝑥) is equal to the CATE

function, and the best approximation by group indicators gives the GATE.

Our general procedure is as follows: for estimation of 𝜏(𝑘) and the respective variances,

we construct a score function / pseudo-outcome, 𝑌 , whose empirical conditional

expectation (in each group) provides an estimate of the GATE, and whose empirical

variance we use as an estimate of the variance. We describe this procedure in more

detail below. Throughout, 𝑋 should be taken to refer to the covariates that are

observed in a given observational study.

Comparing Validation Effect Estimates In our simulation setup, all of the observa-

tional datasets are drawn from a common distribution, which differs from the RCT

distribution, requiring the use of the techniques and assumptions discussed in Sec-

tion B.2 to estimate the GATE, 𝜏𝑖 = E[𝑌1 − 𝑌0 | 𝐺 = 𝑖,𝐷 = 0], using data from the
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observational distributions.

To generate the observational estimates 𝜏 𝑖(𝑘), �̂�
2
𝑖 (𝑘) in this setting, we cannot simply

take empirical conditional expectation / variance of the score function given in

Equation B.6. Rather, the GATE is identified under Assumptions B.2.1 and B.2.2 as

a conditional expectation of the score times a correction factor, as discussed in the

following proposition.

Proposition B.3.1. In the setting of Section B.2, under Assumptions B.2.1 and B.2.2,

the conditional mean potential outcome in the target distribution is identified as

E[𝑌𝑎 | 𝑆 = 0, 𝐺 = 𝑖] =
P(𝑆 = 0)

P(𝑆 = 0 | 𝐺 = 𝑖)
E[𝑌 𝑎(𝜂0, 𝜋0) | 𝐺 = 𝑖], (B.7)

where 𝑌 𝑎(𝜂, 𝜋) is defined as in Equation B.8.

𝑌 𝑎(𝜂, 𝜋) :=
1

𝜋

(︂
1 {𝑆 = 1, 𝐴 = 𝑎} · 1− 𝑝(𝑋)

𝑝(𝑋)𝑒𝑎(𝑋)
· {𝑌 − 𝑔𝑎(𝑋)}+ (1− 𝑆)𝑔𝑎(𝑋)

)︂
(B.8)

where 𝜂 := (𝑔𝑎, 𝑒𝑎, 𝑝) with true underlying parameters 𝜂0 = (𝑔𝑎0, 𝑒𝑎0, 𝑝0), 𝜋 := P(𝑆 = 0)

with true value 𝜋0, 𝑔𝑎(𝑋) := E[𝑌 | 𝐴 = 𝑎, 𝑆 = 1, 𝑋], 𝑝(𝑋) := P(𝑆 = 1 | 𝑋), and

𝑒𝑎(𝑋) := P(𝐴 = 𝑎 | 𝑆 = 1, 𝑋].

A proof is provided in Appendix B.4. Note that this is equivalent to replacing the

estimate of 1/P(𝑆 = 0) in the score with an estimate of 1/P(𝑆 = 0 | 𝐺 = 𝑖), before

computing the empirical conditional expectations of the score.

Now, for each observational dataset, we construct estimates 𝜏 𝑖(𝑘), �̂�
2
𝑖 (𝑘) for 𝑖 ∈ ℐ𝑅 as

follows:

1. We collect observational samples from the two validation groups {lbw, married}

and {hbw, married}, which we denote as 𝐺 = 0, 𝐺 = 1 respectively. We combine

these observational samples with the samples from the RCT, using 𝑆 = 0 to

denote RCT samples (the target distribution) and 𝑆 = 1 to denote observational

samples.
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2. We define our signal for each sample as

𝑌 𝑖(𝜂, �̂�𝑔) := 𝑌
1

𝑖 (𝜂, �̂�𝑔)− 𝑌
0

𝑖 (𝜂, �̂�𝑔) (B.9)

where we define the modified score 𝑌
𝑎

𝑖 , in light of Proposition B.3.1, as

𝑌
𝑎

𝑖 (𝜂, �̂�𝑔) :=
1

�̂�𝑔(𝐺𝑖)

(︂
1 {𝑆𝑖 = 1, 𝐴𝑖 = 𝑎} · 1− �̂�(𝑋𝑖)

�̂�(𝑋𝑖)�̂�𝑎(𝑋𝑖)
· {𝑌𝑖 − 𝑔𝑎(𝑋𝑖)}+ (1− 𝑆𝑖)𝑔𝑎(𝑋𝑖)

)︂
,

(B.10)

where �̂�𝑔(𝐺𝑖) is defined as an estimate of 𝜋𝑔(𝐺𝑖) := P(𝑆 = 0 | 𝐺𝑖), computed

using empirical averages.

3. We use 3-fold cross-fitting as described in Semenova and Chernozhukov (2021) to

generate the signals for each sample, such that for the 𝑖-th datapoint, the score

𝑌 𝑖(𝜂, �̂�) uses plug-in estimates 𝜂 = (�̂�1, �̂�0, �̂�1, �̂�) that are learned on the folds that

do not include the 𝑖-th datapoint, and �̂� is estimated using empirical averages.

In practice, we use a multi-layer perceptron (MLP) regressor for estimating 𝑔𝑎,

and ℓ2-regularized logistic regression for estimating �̂�1, �̂�, with hyperparameters

described in Section B.6. For each model, we reserve 20% of the current fold in

the cross fitting procedure as a validation set to do hyperparameter selection.

4. Finally, we estimate 𝜏 𝑖(𝑘) as the empirical average E[𝑌 (𝜂, �̂�𝑔) | 𝐺 = 𝑖], and

we use the empirical conditional variance of this score to estimate the variance

�̂�2
𝑖 (𝑘).

We construct the RCT estimate 𝜏 𝑖(0) (using the RCT sample alone) as the difference of

the empirical conditional means E𝑁0 [𝑌
(︁

1{𝐴=1}
𝑃 (𝐴=1)

− 1{𝐴=0}
1−𝑃 (𝐴=1)

)︁
| 𝐺 = 𝑖], where �̂� (𝐴 = 1)

is an empirical average. We compute �̂�2
𝑖 (0) as the empirical conditional variance of

this quantity. We then conduct testing, as described in Algorithm 1.

Asymptotic normality of transported estimators We herein provide sufficient assump-

tions that guarantee the asymptotic normality of our transported GATE estimators,

i.e. the empirical average E[𝑌 (𝜂, �̂�𝑔)|𝐺 = 𝑖]:
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Assumption B.3.1 (Observational dataset covers the whole support of covariates).

inf
𝑥∈𝒳

𝑝0(𝑥) = 𝜀𝑝 > 0

Note that Assumption B.3.1 is implied by Assumption 4.1.

Assumption B.3.2 (Bounded within-subgroup variance of conditional treatment effects

in the RCT).

sup
𝑥∈𝒳

𝑣𝑎𝑟[𝑔10(𝑥)− 𝑔00(𝑥)|𝐺 = 𝑖, 𝑆 = 0] = 𝜎2
𝜏𝑖 <∞

Assumption B.3.3 (Overlap between treatments in the observational dataset).

inf
𝑥∈𝒳

min(𝑒00(𝑥), 𝑒10(𝑥)) = 𝜀𝑒 > 0

Assumption B.3.4 (Finite outcome conditional variance in the observational dataset).

max
𝑎∈{0,1}

sup
𝑥∈𝒳

E[(𝑌 − 𝑔𝑎0(𝑥))
2|𝑋 = 𝑥, 𝑆 = 1, 𝐴 = 𝑎] = �̄�2 <∞

Assumption B.3.5 (Properties of the nuisance function estimators). Let 𝜂(𝑛) be a

sequence of estimators for 𝜂 indexed by the size of the cross-fitting training fold 𝑛.

We assume that there exists

• 𝜖𝑛 = 𝑜𝑃 (1), a sequence of positive numbers

• 𝒯𝑛, a sequence of nuisance function vector sets in the neighborhood of 𝜂0 =

(𝑔10, 𝑔00, 𝑒10, 𝑝0) satisfying P(𝜂(𝑛) ∈ 𝒯𝑛) ≥ 1− 𝜖𝑛

• g𝑛, e𝑛,p𝑛, sequences of worst root mean square errors for the nuisance functions

344



𝑔1, 𝑔0, 𝑒1, 𝑝, defined as follows:

g𝑛 := max
𝑎∈{0,1}

sup
𝜂∈𝒯𝑛

√︀
E[𝑔𝑎(𝑋)− 𝑔𝑎0(𝑋)]2

e𝑛 := sup
𝜂∈𝒯𝑛

√︀
E[𝑒1(𝑋)− 𝑒10(𝑋)]2

p𝑛 := sup
𝜂∈𝒯𝑛

√︀
E[𝑝(𝑋)− 𝑝0(𝑋)]2

so that the following assumptions hold:

Assumption A: (Rate of nuisance error)

g𝑛 ∨ e𝑛 ∨ p𝑛 = 𝑜𝑃 (1)

Assumption B: (Rate of nuisance error product)

√
𝑛g𝑛(e𝑛 ∨ p𝑛) = 𝑜𝑃 (1)

Assumption C: (Bounded nuisance estimates)

sup
𝜂∈∪∞

𝑛=1𝒯𝑛

(︂
max
𝑎∈{0,1}

sup
𝑥∈𝒳
|𝑔𝑎(𝑥)| ∨ sup

𝑥∈𝒳

⃒⃒⃒⃒
1

𝑝(𝑥)

⃒⃒⃒⃒
∨ sup

𝑥∈𝒳

⃒⃒⃒⃒
1

𝑒1(𝑥)

⃒⃒⃒⃒
∨ sup

𝑥∈𝒳

⃒⃒⃒⃒
1

𝑒0(𝑥)

⃒⃒⃒⃒)︂
= 𝒞 <∞

Theorem B.3.1. Suppose Assumptions B.3.1 to B.3.5 hold. Then, the empirical

average, E[𝑌 (𝜂, �̂�𝑔)|𝐺 = 𝑖], where 𝑌 is defined in Equation B.9 and 𝜂 is estimated

with cross-fitting, is asymptotically normal.

Remark : As we will prove later in section B.4.2, Assumptions B.3.1 to B.3.4 guarantee

that when the nuisance function vector (𝑔10, 𝑔00, 𝑒10, 𝑝0)
⊤ is known (i.e. need not be

estimated), the transported GATE estimator is asymptotically normal. In practice,

(𝑔10, 𝑔00, 𝑒10, 𝑝0)
⊤ is not known and has to be estimated, so Assumption B.3.5 lays

out sufficient properties the nuisance function vector estimator needs to satisfy. In

particular, Assumptions B.3.5.A and B.3.5.B permit that the convergence rate of
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estimators can be slower than 𝑜𝑃 (𝑛
−1/2), which is useful when 𝑋 is high-dimensional

and machine learning models are required to estimate the nuisance functions. To

date, a variety of commonly-used machine learning models have been shown to enjoy

a convergence rate of at least 𝑜𝑃 (𝑛
−1/4), e.g. Bühlmann and Van De Geer (2011);

Belloni et al. (2011b,a) for certain ℓ1 penalized models, Wager and Walther (2015)

for a class of regression trees and random forests, and Chen and White (1999) for a

class of neural nets. This implies when these models are applied to the estimation of

(𝑔10, 𝑔00, 𝑒10, 𝑝0)
⊤, Assumptions B.3.5.A and B.3.5.B hold, so our transported GATE

estimator is asymptotically normal and Assumption 4.4 is satisfied.

Constructing Confidence Intervals for the Extrapolated Effects In our experimental

setup, the data generating distribution for all observational studies is identical, so no

transportation of effects is required, which enables the application of existing results.

We use the doubly-robust score (Robins et al., 1994; Robins and Rotnitzky, 1995) as

the signal for the conditional average treatment effect,

𝑌 (𝜂) = 𝜇(1, 𝑋)− 𝜇(0, 𝑋) +
𝐴(𝑌 − 𝜇(1, 𝑋))

𝑠(𝑋)
− (1− 𝐴)(𝑌 − 𝜇(0, 𝑋))

1− 𝑠(𝑋)
, (B.11)

where 𝜂 := (𝜇, 𝑠), and 𝜇(𝐴,𝑋) := E[𝑌 |𝐴,𝑋], and 𝑠(𝑋) := P(𝐴 = 1 | 𝑋). We use a

multi-layer perceptron (MLP) regressor as a plug-in estimate �̂� of 𝜇, and ℓ2-regularized

logistic regression as a plug-in estimate �̂� of 𝑠, with hyperparameters described in

Section B.6.

Following example 2.2 from Semenova and Chernozhukov (2021), we approximate the

conditional treatment effect with a linear combination of subgroup dummy variables

𝐺 = (𝐺0, 𝐺1, 𝐺2, 𝐺3)
⊤, so the combination weights correspond to the GATEs 𝜏(𝑘) =

(𝜏(𝑘)0, 𝜏(𝑘)1, 𝜏(𝑘)2, 𝜏(𝑘)3). This amounts to regressing the estimated signal 𝑌 𝑖(𝜂) with

𝐺. As long as the propensity score is bounded above and below away from 0 and 1

(Assumption 4.10(a) of Semenova and Chernozhukov (2021)), and the convergence rates

of the response surface and propensity score estimates are sufficiently fast (Assumption

4.11), Corollary 4.1 and a set of mild technical conditions justify Theorem 3.1 in
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Semenova and Chernozhukov (2021), which gives a result on pointwise asymptotic

normality for the regression coeffcients 𝜏(𝑘) = (𝜏(𝑘)0, 𝜏(𝑘)1, 𝜏(𝑘)2, 𝜏(𝑘)3) ∈ R4, so

that for any unit vector 𝛾 ∈ R4 where ‖𝛾‖ = 1,

lim
𝑁𝑘→∞

sup
𝑡∈R

⃒⃒⃒⃒
⃒P
(︃√

𝑁𝑘𝛾
⊤(𝜏(𝑘)− 𝜏(𝑘))√︀

𝛾⊤Ω𝛾
< 𝑡

)︃
− Φ(𝑡)

⃒⃒⃒⃒
⃒ = 0

where Ω can be consistently estimated with Equation 2.5 in Semenova and Cher-

nozhukov (2021)

Ω̂ =

(︃
1

𝑁𝑘

∑︁
𝑗

𝐺𝑗𝐺
⊤
𝑗

)︃−1(︃
1

𝑁𝑘

∑︁
𝑗

𝐺𝑗𝐺
⊤
𝑗 (𝑌 𝑗(𝜂)−𝐺⊤

𝑗 𝜏(𝑘))
2

)︃(︃
1

𝑁𝑘

∑︁
𝑗

𝐺𝑗𝐺
⊤
𝑗

)︃−1

Setting 𝛾 as 1 in the (𝑖+ 1)th element and 0 elsewhere thus yields

lim
𝑁𝑘→∞

sup
𝑡∈R

⃒⃒⃒⃒
P
(︂√

𝑁𝑘(𝜏 𝑖(𝑘)− 𝜏𝑖(𝑘))√
Ω𝑖𝑖

< 𝑡

)︂
− Φ(𝑡)

⃒⃒⃒⃒
= 0

We therefore estimate �̂�2
𝑖 (𝑘), the variance of 𝜏 𝑖(𝑘), with Ω̂𝑖𝑖, and as this converges in

probability to Ω𝑖𝑖, the asymptotic normality of the above follows via Slutsky’s theorem.

B.4 Proofs

B.4.1 Proofs for propositions and theorems

Proposition 4.1. For an observational estimator 𝜏(𝑘), assume Assumptions 4.2 and

4.4 hold. Furthermore, let 𝑁 = 𝑁𝑘 +𝑁0 with fixed proportions, where 𝑁𝑘 = 𝜌𝑁,𝑁0 =

(1− 𝜌)𝑁 for 𝜌 ∈ (0, 1). Define the test statistic

𝑇𝑁(𝑘, 𝑖) :=
𝜏 𝑖(𝑘)− 𝜏 𝑖(0)− 𝜇𝑖(𝑘)

�̂�
(4.3)

where �̂�2 :=
�̂�2
𝑖 (𝑘)

𝑁𝑘
+

�̂�2
𝑖 (0)

𝑁0
is the estimated variance, and 𝜇𝑖(𝑘) := 𝜏𝑖(𝑘)− 𝜏𝑖. This test

statistic converges in distribution to a normal distribution as 𝑁 → ∞, 𝑇𝑁(𝑘, 𝑖)
d→
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𝒩 (0, 1).

Proof. As 𝑁 →∞, we have it that

√︀
𝜌𝑁(𝜏 𝑖(𝑘)− 𝜏𝑖(𝑘))

d→ 𝒩 (0, 𝜎2
𝑖 (𝑘))√︀

(1− 𝜌)𝑁(𝜏 𝑖(0)− 𝜏𝑖)
d→ 𝒩 (0, 𝜎2

𝑖 (0))

where we have written 𝜌𝑁 in place of 𝑁𝑘, and similarly for 𝑁0. By Slutsky’s theorem,

we can multiply by the constants 𝜌−1/2 and (1− 𝜌)−1/2 to get both results in terms of
√
𝑁 . We can then use independence of 𝜏(𝑘), 𝜏(0) to write that

√
𝑁

⎛⎝𝜏 𝑖(𝑘)− 𝜏𝑖(𝑘)

𝜏 𝑖(0)− 𝜏𝑖

⎞⎠
⏟  ⏞  

𝑍−𝜃

d→ 𝒩

⎛⎝⎛⎝0

0

⎞⎠ ,

⎡⎣𝜎2
𝑖 (𝑘)/𝜌 0

0 𝜎2
𝑖 (0)/(1− 𝜌)

⎤⎦⎞⎠ .

We now apply the Delta method. Let 𝑍 = (𝜏 𝑖(𝑘), 𝜏 𝑖(0)) denote the (column) vector of

estimates, and similarly let 𝜃 = (𝜏𝑖(𝑘), 𝜏𝑖). Letting 𝑓(𝑋) = 𝑋1 −𝑋2, we can argue

that

√
𝑁(𝑍 − 𝜃)

d→ 𝒩 (0,Σ) =⇒
√
𝑁(𝑓(𝑍)− 𝑓(𝜃))

d→ 𝒩
(︁
0,∇𝑓(𝜃)⊤Σ ∇𝑓(𝜃)

)︁
,

where the resulting variance is given by

∇𝑓(𝜃)⊤Σ ∇𝑓(𝜃) = 𝜎2
𝑖 (𝑘)

𝜌
+

𝜎2
𝑖 (0)

1− 𝜌
,

and 𝑓(𝑍)− 𝑓(𝜃) = 𝜏𝑖(𝑘)− 𝜏𝑖 − 𝜇𝑖(𝑘).

√
𝑁(𝜏𝑖(𝑘)− 𝜏𝑖 − 𝜇𝑖(𝑘))

d→ 𝒩
(︂
0,

𝜎2
𝑖 (𝑘)

𝜌
+

𝜎2
𝑖 (0)

1− 𝜌

)︂
,

and accordingly that

𝜏(𝑘)𝑖 − 𝜏𝑖 − 𝜇𝑖(𝑘)√︁
𝜎2
𝑖 (𝑘)

𝑁𝑘
+

𝜎2
𝑖 (0)

𝑁0

d→ 𝒩 (0, 1),
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where this also holds (by Slutsky’s theorem) with 𝜎2(𝑘)𝑖 and 𝜎2
𝑖 (0) replaced by their

empirical estimates, which converge in probability.

Theorem 4.1 (Properties of Algorithm 1). Under Assumptions 4.1 and 4.2, the output

of Algorithm 1 has the following asymptotic properties as 𝑁 →∞, where 𝑁 denotes

the total sample size, and the samples used for all estimators are of the same order

𝑁𝑘 = 𝜌𝑘𝑁0, ∀𝑘 ≥ 1, for some 𝜌𝑘 > 0.

1. Under Assumptions 4.3 and 4.4, for each 𝑖 ∈ ℐ𝑂,

lim
𝑁→∞

P(𝜏𝑖 ∈ [�̂�𝑖, �̂� 𝑖]) ≥ 1− 𝛼 (4.6)

2. Under Assumption 4.4, for each estimator where 𝜏𝑖(𝑘) ̸= 𝜏𝑖 for some 𝑖 ∈ ℐ𝑅,

lim
𝑁→∞

P(𝑘 ∈ 𝒞) = 0 (4.7)

Proof. (1) By asymptotic normality and consistency of each dimension of 𝜏(𝑘), the

test statistic 𝑇𝑁 (𝑘, 𝑖) converges in distribution to 𝒩 (0, 1). As a result, for each 𝑖 ∈ ℐ𝑅,

the probability that
⃒⃒⃒
𝑇𝑁(𝑘, 𝑖)

⃒⃒⃒
> 𝑧𝛼/(4|ℐ𝑅|) converges to 𝛼/(2 |ℐ𝑅|). By an application

of the union bound, the probability that this occurs for any 𝑖 ∈ ℐ𝑅 is bounded by

𝛼/2. Similarly, by the assumed properties of 𝜏(𝑘), the probability that the confidence

interval [�̂�𝑖(𝑘)(𝛼/2), �̂� 𝑖(𝑘)(𝛼/2)] fails to capture the true value of 𝜏𝑖 converges to 𝛼/2.

By another application of the union bound, for each 𝑖 ∈ ℐ𝑂, the probability that either

𝜏(𝑘) is not selected or 𝜏𝑖 is not contained in the interval is upper bounded by 𝛼. The

result follows.

(2) By asymptotic normality of each 𝜏(𝑘), the power calculation in Equation (4.4)

holds, and as 𝑁 →∞, the probability of rejecting the null hypothesis converges to

zero as 𝜎2
𝑘,0 becomes arbitrarily large, which occurs as both 𝑁𝑘, 𝑁0 →∞.

Proposition B.3.1. In the setting of Section B.2, under Assumptions B.2.1 and B.2.2,
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the conditional mean potential outcome in the target distribution is identified as

E[𝑌𝑎 | 𝑆 = 0, 𝐺 = 𝑖] =
P(𝑆 = 0)

P(𝑆 = 0 | 𝐺 = 𝑖)
E[𝑌 𝑎(𝜂0, 𝜋0) | 𝐺 = 𝑖], (B.7)

where 𝑌 𝑎(𝜂, 𝜋) is defined as in Equation B.8.

𝑌 𝑎(𝜂, 𝜋) :=
1

𝜋

(︂
1 {𝑆 = 1, 𝐴 = 𝑎} · 1− 𝑝(𝑋)

𝑝(𝑋)𝑒𝑎(𝑋)
· {𝑌 − 𝑔𝑎(𝑋)}+ (1− 𝑆)𝑔𝑎(𝑋)

)︂
(B.8)

where 𝜂 := (𝑔𝑎, 𝑒𝑎, 𝑝) with true underlying parameters 𝜂0 = (𝑔𝑎0, 𝑒𝑎0, 𝑝0), 𝜋 := P(𝑆 = 0)

with true value 𝜋0, 𝑔𝑎(𝑋) := E[𝑌 | 𝐴 = 𝑎, 𝑆 = 1, 𝑋], 𝑝(𝑋) := P(𝑆 = 1 | 𝑋), and

𝑒𝑎(𝑋) := P(𝐴 = 𝑎 | 𝑆 = 1, 𝑋].

Proof. First, we can observe by standard arguments that the conditional expectation

of 𝑌 𝑎(𝜂0, 𝜋0) given 𝑋 is given by the following

E[𝑌 𝑎(𝜂0, 𝜋0) | 𝑋 = 𝑥] = E
[︂

1− 𝑆

P(𝑆 = 0)
𝑔𝑎0(𝑋)

⃒⃒⃒⃒
𝑋 = 𝑥

]︂
,

because the first term in Equation (B.8) is mean-zero conditioned on 𝑋 = 𝑥. This

follows by the law of total expectation: for any event where 𝑆 = 1, 𝐴 = 𝑎 does not hold,

the first term is zero due to the indicator, and for any other event 𝑆 = 1, 𝐴 = 𝑎,𝑋 = 𝑥,

the first term is mean-zero, since the first term becomes a constant (determined by

𝑆 = 1, 𝐴 = 𝑎,𝑋 = 𝑥) times a mean-zero random variable 𝑌 − E[𝑌 | 𝐴 = 𝑎, 𝑆 =

1, 𝑋 = 𝑥].

As a result, we can write that

E[𝑌 𝑎(𝜂0, 𝜋0) | 𝐺 = 𝑖]

= E
[︂

1− 𝑆

P(𝑆 = 0)
E[𝑌 | 𝐴 = 𝑎, 𝑆 = 1, 𝑋]

⃒⃒⃒⃒
𝐺 = 𝑖

]︂
=

1

P(𝑆 = 0)

∫︁
𝑥

∑︁
𝑠

1 {𝑠 = 0}E[𝑌 | 𝐴 = 𝑎, 𝑆 = 1, 𝑥]𝑝(𝑠, 𝑥 | 𝐺 = 𝑖)𝑑𝑥

=
1

P(𝑆 = 0)

∫︁
𝑥

∑︁
𝑠

1 {𝑠 = 0}E[𝑌𝑎 | 𝑆 = 1, 𝑥]𝑝(𝑠, 𝑥 | 𝐺 = 𝑖)𝑑𝑥
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(By Assumption B.2.1, 𝑌𝑎 ⊥⊥ 𝐴 | 𝑋,𝑆 = 1)

=
1

P(𝑆 = 0)

∫︁
𝑥

∑︁
𝑠

1 {𝑠 = 0}E[𝑌𝑎 | 𝑆 = 0, 𝑥]𝑝(𝑠, 𝑥 | 𝐺 = 𝑖)𝑑𝑥

(By Assumption B.2.2, 𝑌𝑎 ⊥⊥ 𝑆 | 𝑋)

=
1

P(𝑆 = 0)

∫︁
𝑥

E[𝑌𝑎 | 𝑥, 𝑆 = 0]𝑝(𝑆 = 0, 𝑥 | 𝐺 = 𝑖)𝑑𝑥

=
1

P(𝑆 = 0)

∫︁
𝑥

E[𝑌𝑎 | 𝑥, 𝑆 = 0]𝑝(𝑥 | 𝑆 = 0, 𝐺 = 𝑖)P(𝑆 = 0 | 𝐺 = 𝑖)𝑑𝑥

=
P(𝑆 = 0 | 𝐺 = 𝑖)

P(𝑆 = 0)

∫︁
𝑥

E[𝑌𝑎 | 𝑥, 𝑆 = 0]𝑝(𝑥 | 𝑆 = 0, 𝐺 = 𝑖)𝑑𝑥

=
P(𝑆 = 0 | 𝐺 = 𝑖)

P(𝑆 = 0)

∫︁
𝑥

E[𝑌𝑎 | 𝑥, 𝑆 = 0, 𝐺 = 𝑖]𝑝(𝑥 | 𝑆 = 0, 𝐺 = 𝑖)𝑑𝑥

(Since 𝑋 = 𝑥⇒ 𝐺 = 𝑖, ∀𝑥 : 𝑝(𝑥 | 𝐺 = 𝑖) > 0)

=
P(𝑆 = 0 | 𝐺 = 𝑖)

P(𝑆 = 0)
E[𝑌𝑎 | 𝑆 = 0, 𝐺 = 𝑖]

and the result follows from dividing both sides by the first term on the right-hand

side, which we can observe is equivalent to multiplying both sides by

P(𝑆 = 0)

P(𝑆 = 0 | 𝐺 = 𝑖)
=

P(𝑆 = 0)P(𝐺 = 𝑖)

P(𝑆 = 0, 𝐺 = 𝑖)
=

P(𝐺 = 𝑖)

P(𝐺 = 𝑖 | 𝑆 = 0)
(B.12)

B.4.2 Asymptotic normality of cross-fitted transported GATE esti-

mators

Theorem B.3.1. Suppose Assumptions B.3.1 to B.3.5 hold. Then, the empirical

average, E[𝑌 (𝜂, �̂�𝑔)|𝐺 = 𝑖], where 𝑌 is defined in Equation B.9 and 𝜂 is estimated

with cross-fitting, is asymptotically normal.

Proof sketch: Our strategy for the proof consists of two stages. First, we show

that if the nuisance function is known to be 𝜂0 and plugged into the estimator as

E[𝑌 (𝜂0, �̂�𝑔)|𝐺 = 𝑖], the resulting estimator, which we later refer to as the oracle

estimator, is asymptotically normal. Second, we show that even if the true nuisance
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function is not known, as long as we have an estimator, 𝜂, of the nuisance function

that follows certain properties, the resulting estimator E[𝑌 (𝜂, �̂�𝑔)|𝐺 = 𝑖] converges

to the oracle estimator in probability. Then, by Slutsky’s Theorem, the resulting

estimator is also asymptotically normal.

Before diving into the first stage of the proof, we introduce additional notation to

reflect the cross-fitting nature of our GATE estimator. Let the combined sample size

of the observational study and RCT be 𝑁 with sample indices [𝑁 ] := {1, 2, ..., 𝑁}.

We denote (𝐼𝑚)
𝑀
𝑚=1 as a 𝑀 -fold random partition of [𝑁 ], so that each fold has size

𝑁𝑀 = 𝑁/𝑀 . The plug-in nuisance function estimate for the 𝑚th fold, 𝜂𝑚, is then

estimated from the rest of the folds 𝐼𝑐𝑚 := [𝑁 ]∖𝐼𝑚. For brevity, we denote the size of

the rest of the folds as 𝑁 𝑐
𝑀 = 𝑁 −𝑁/𝑀 .

We now restate the definition of the treatment effect signal 𝑌 𝑗(𝜂, 𝜋𝑔) = 𝑌 𝑗((𝑔1, 𝑔0, 𝑒1, 𝑝)
⊤, 𝜋𝑔):

𝑌 𝑗(𝜂, 𝜋𝑔) := 𝑌
1

𝑗(𝜂, 𝜋𝑔)− 𝑌
0

𝑗(𝜂, 𝜋𝑔)

𝑌
𝑎

𝑗 (𝜂, 𝜋𝑔) :=
1

𝜋𝑔(𝐺𝑖)

(︂
1 {𝑆𝑗 = 1, 𝐴𝑗 = 𝑎} · 1− 𝑝(𝑋𝑗)

𝑝(𝑋𝑗)𝑒𝑎(𝑋𝑗)
· {𝑌𝑗 − 𝑔𝑎(𝑋𝑗)}+ (1− 𝑆𝑗)𝑔𝑎(𝑋𝑗)

)︂

In the remainder of the development, we will drop the subscript 𝑗, which represents

one of the 𝑁 samples, for conciseness.

Stage 1 — Proving the asymptotic normality of the oracle estimator

For brevity, we define the following unweighted signal:

Definition B.4.1 (Unweighted signal functional).

𝒴(𝜂) = 𝜋𝑔(𝐺)𝑌 (𝜂, 𝜋𝑔)

= 𝜋𝑔(𝐺)(𝑌
1
(𝜂, 𝜋𝑔)− 𝑌

0
(𝜂, 𝜋𝑔))

= (1− 𝑆)(𝑔1(𝑋)− 𝑔0(𝑋)) + 𝑆
1− 𝑝(𝑋)

𝑝(𝑋)

(𝐴− 𝑒1(𝑋))(𝑌 − 𝑔𝐴(𝑋))

𝑒1(𝑋)𝑒0(𝑋)

From the proof of Proposition B.3.1, we have the following identities for the unweighted

signals:
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Lemma B.4.1 (Conditional mean of unweighted (oracle) signal). The conditional mean

of the unweighted (oracle) signal is equivalent to the following:

E[𝒴(𝜂0)|𝐺 = 𝑖] = 𝜏𝑖𝜋𝑔(𝑖)

E[𝒴(𝜂0)|𝐺 = 𝑖, 𝑆 = 0] = 𝜏𝑖

.

Proof. First, we have,

E[𝒴(𝜂0)|𝐺 = 𝑖] = E[𝜋𝑔(𝐺)𝑌 (𝜂0, 𝜋𝑔)|𝐺 = 𝑖]

= E[𝜋𝑔(𝑖)𝑌 (𝜂0, 𝜋𝑔)|𝐺 = 𝑖]

= 𝜋𝑔(𝑖)E[𝑌 (𝜂0, 𝜋𝑔)|𝐺 = 𝑖]

= 𝜏𝑖𝜋𝑔(𝑖)

Next, using Definition D.1 of the unweighted signal functional and the fact that we

condition on 𝑆 = 0, we have,

E[𝒴(𝜂0)|𝐺 = 𝑖, 𝑆 = 0] = E [𝑔10(𝑋)− 𝑔00(𝑋)|𝐺 = 𝑖, 𝑆 = 0] ,

which is 𝜏𝑖 as desired.

In addition, we can rewrite our estimator 𝜏 𝑖 := E[𝑌 (𝜂, �̂�𝑔)|𝐺 = 𝑖] with the unweighted
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signals:

𝜏 𝑖 = E[𝑌 (𝜂, �̂�𝑔)|𝐺 = 𝑖] =

∑︀
𝑚

∑︀
𝑗∈𝐼𝑚 1(𝐺𝑗 = 𝑖)𝑌 (𝜂𝑚, �̂�𝑔)∑︀

𝑗 1(𝐺𝑗 = 𝑖)

=

∑︀
𝑚

∑︀
𝑗∈𝐼𝑚 1(𝐺𝑗 = 𝑖) 1

�̂�𝑔(𝐺𝑗)
𝒴(𝜂𝑚)∑︀

𝑗 1(𝐺𝑗 = 𝑖)
, from Def. D.1

=

∑︀
𝑚

∑︀
𝑗∈𝐼𝑚 1(𝐺𝑗 = 𝑖) 1

�̂�𝑔(𝑖)
𝒴(𝜂𝑚)∑︀

𝑗 1(𝐺𝑗 = 𝑖)

=
1

�̂�𝑔(𝑖)

∑︀
𝑚

∑︀
𝑗∈𝐼𝑚 1(𝐺𝑗 = 𝑖)𝒴(𝜂𝑚)∑︀

𝑗 1(𝐺𝑗 = 𝑖)

=

∑︀
𝑚

∑︀
𝑗∈𝐼𝑚 1(𝐺𝑗 = 𝑖)𝒴(𝜂𝑚)∑︀

𝑗 1(𝐺𝑗=1,𝑆𝑗=0)∑︀
𝑗 1(𝐺𝑗=𝑖)

∑︀
𝑗 1(𝐺𝑗 = 𝑖)

=

∑︀
𝑚

∑︀
𝑗∈𝐼𝑚 1(𝐺𝑗 = 𝑖)𝒴(𝜂𝑚)∑︀

𝑗 1(𝐺𝑗 = 1, 𝑆𝑗 = 0)

Now, using the above expression, we can define the oracle estimator, where we know

the true value of 𝜂, which is 𝜂0:

Definition B.4.2 (Oracle GATE Estimator).

𝜏 𝑖0 :=

∑︀
𝑗 1(𝐺𝑗 = 𝑖)𝒴𝑗(𝜂0)∑︀
𝑗 1(𝐺𝑗 = 𝑖, 𝑆𝑗 = 0)

To show the asymptotic distribution of the oracle GATE estimator, we restate several

assumptions:

Assumption B.3.1 (Observational dataset covers the whole support of covariates).

inf
𝑥∈𝒳

𝑝0(𝑥) = 𝜀𝑝 > 0

Assumption B.3.2 (Bounded within-subgroup variance of conditional treatment effects

in the RCT).

sup
𝑥∈𝒳

𝑣𝑎𝑟[𝑔10(𝑥)− 𝑔00(𝑥)|𝐺 = 𝑖, 𝑆 = 0] = 𝜎2
𝜏𝑖 <∞
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Assumption B.3.3 (Overlap between treatments in the observational dataset).

inf
𝑥∈𝒳

min(𝑒00(𝑥), 𝑒10(𝑥)) = 𝜀𝑒 > 0

Assumption B.3.4 (Finite outcome conditional variance in the observational dataset).

max
𝑎∈{0,1}

sup
𝑥∈𝒳

E[(𝑌 − 𝑔𝑎0(𝑥))
2|𝑋 = 𝑥, 𝑆 = 1, 𝐴 = 𝑎] = �̄�2 <∞

These assumptions ensure that the oracle signals have finite conditional variance,

which we prove in the following lemma.

Lemma B.4.2 (Finite conditional variance of unweighted oracle signal). Under As-

sumptions B.3.1 - B.3.4, we have that,

𝑣𝑎𝑟[𝒴(𝜂0)|𝐺 = 𝑖] := 𝜎2
𝑖 <∞, ∀𝑖 ∈ [𝑑]
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Proof.

𝑣𝑎𝑟[𝒴(𝜂0)|𝐺 = 𝑖]

=E[𝒴2(𝜂0)|𝐺 = 𝑖]− [E[𝒴(𝜂0)|𝐺 = 𝑖]]2

=E
[︂(︂

(1− 𝑆)(𝑔10(𝑋)− 𝑔00(𝑋)) +

𝑆
1− 𝑝0(𝑋)

𝑝0(𝑋)

(𝐴− 𝑒10(𝑋))(𝑌 − 𝑔𝐴0(𝑋))

𝑒10(𝑋)𝑒00(𝑋)

)︂2
⃒⃒⃒⃒
⃒𝐺 = 𝑖

]︃
− 𝜋𝑔(𝑖)

2𝜏 2𝑖

=

{︂
E
[︀
(1− 𝑆)(𝑔10(𝑋)− 𝑔00(𝑋))2

⃒⃒
𝐺 = 𝑖

]︀
+

E

[︃
𝑆

(︂
1− 𝑝0(𝑋)

𝑝0(𝑋)

(𝐴− 𝑒10(𝑋))(𝑌 − 𝑔𝐴0(𝑋))

𝑒10(𝑋)𝑒00(𝑋)

)︂2
⃒⃒⃒⃒
⃒𝐺 = 𝑖

]︃}︃
− 𝜋𝑔(𝑖)

2𝜏 2𝑖

=

{︂
E
[︀
(𝑔10(𝑋)− 𝑔00(𝑋))2

⃒⃒
𝐺 = 𝑖, 𝑆 = 0

]︀
𝜋𝑔(𝑖) +

E

[︃(︂
1− 𝑝0(𝑋)

𝑝0(𝑋)

(𝐴− 𝑒10(𝑋))(𝑌 − 𝑔𝐴0(𝑋))

𝑒10(𝑋)𝑒00(𝑋)

)︂2
⃒⃒⃒⃒
⃒𝐺 = 𝑖, 𝑆 = 1

]︃
(1− 𝜋𝑔(𝑖))

}︃
− 𝜋𝑔(𝑖)

2𝜏 2𝑖

=

{︂[︀
𝑣𝑎𝑟 [𝑔10(𝑋)− 𝑔00(𝑋)|𝐺 = 𝑖, 𝑆 = 0] + 𝜏 2𝑖

]︀
𝜋𝑔(𝑖) +

E

[︃(︂
1− 𝑝0(𝑋)

𝑝0(𝑋)

(𝐴− 𝑒10(𝑋))(𝑌 − 𝑔𝐴0(𝑋))

𝑒10(𝑋)𝑒00(𝑋)

)︂2
⃒⃒⃒⃒
⃒𝐺 = 𝑖, 𝑆 = 1

]︃
(1− 𝜋𝑔(𝑖))

}︃
− 𝜋𝑔(𝑖)

2𝜏 2𝑖

<

{︂[︀
𝜎2
𝜏𝑖 + 𝜏 2𝑖

]︀
𝜋𝑔(𝑖) +

E[(𝑌 − 𝑔𝐴0(𝑋))2|𝐺 = 𝑖, 𝑆 = 1]

𝜀2𝜋𝜀
2
𝑒(1− 𝜀𝑒)2

(1− 𝜋𝑔(𝑖))

}︂
− 𝜋𝑔(𝑖)

2𝜏 2𝑖

≤
{︂[︀

𝜎2
𝜏𝑖 + 𝜏 2𝑖

]︀
𝜋𝑔(𝑖) +

�̄�2

𝜀2𝜋𝜀
2
𝑒(1− 𝜀𝑒)2

(1− 𝜋𝑔(𝑖))

}︂
− 𝜋𝑔(𝑖)

2𝜏 2𝑖 <∞

Where the first line follows from Lemma B.4.1, the penultimate line follows from

Assumptions B.3.1-B.3.3, and the final line follows from Assumption B.3.4.

Now, using the above lemmas, we are ready to prove the main result of stage 1 of the

proof, stated below.

Proposition B.4.1 (Asymptotic normality of oracle GATE estimator). Under Assump-

tions B.3.1 - B.3.4,

√
𝑁(𝜏 𝑖0 − 𝜏𝑖)

𝑑−→ 𝒩
(︂
0,

𝜎2
𝑖 − 𝜋𝑔(𝑖)(1− 𝜋𝑔(𝑖))𝜏

2
𝑖

𝜋𝑔(𝑖)2P(𝐺 = 𝑖)

)︂
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Proof. We have that,

√
𝑁(𝜏 𝑖0 − 𝜏𝑖)

=
√
𝑁

(︃ ∑︀
𝑗 1(𝐺𝑗 = 𝑖)𝒴𝑗(𝜂0)∑︀
𝑗 1(𝐺𝑗 = 𝑖, 𝑆𝑗 = 0)

− 𝜏𝑖

)︃

=
√
𝑁

(︃ ∑︀
𝑗 1(𝐺𝑗 = 𝑖)𝒴𝑗(𝜂0)∑︀
𝑗 1(𝐺𝑗 = 𝑖, 𝑆𝑗 = 0)

−
∑︀

𝑗 1(𝐺𝑗 = 𝑖, 𝑆𝑗 = 0)𝜏𝑖∑︀
𝑗 1(𝐺𝑗 = 𝑖, 𝑆𝑗 = 0)

)︃

=
√
𝑁

∑︀
𝑗 1(𝐺𝑗 = 𝑖)(𝒴𝑗(𝜂0)− 𝜏𝑖1(𝑆𝑗 = 0))∑︀

𝑗 1(𝐺𝑗 = 𝑖, 𝑆𝑗 = 0)

=

√
𝑁 1

𝑁

∑︀
𝑗 1(𝐺𝑗 = 𝑖)(𝒴𝑗(𝜂0)− 𝜏𝑖1(𝑆𝑗 = 0))
1
𝑁

∑︀
𝑗 1(𝐺𝑗 = 𝑖, 𝑆𝑗 = 0)

𝑑−→ 𝒩 (0, (𝜎2
𝑖 − 𝜏 2𝑖 𝜋𝑔(𝑖)(1− 𝜋𝑔(𝑖)))P(𝐺 = 𝑖))

𝑝−→ P(𝐺 = 𝑖, 𝑆 = 0) = P(𝐺 = 𝑖)𝜋𝑔(𝑖)

𝑑−→𝒩
(︂
0,

𝜎2
𝑖 − 𝜏 2𝑖 𝜋𝑔(𝑖)(1− 𝜋𝑔(𝑖))

𝜋𝑔(𝑖)2P(𝐺 = 𝑖)

)︂

Where in the last line, we use Slutsky’s lemma, and in the penultimate line, we use

the following fact, proven below, that

√
𝑁

[︃
1

𝑁

∑︁
𝑗

1(𝐺 = 𝑖)(𝒴(𝜂0)− 𝜏𝑖1(𝑆 = 0))

]︃
𝑑−→ 𝒩 (0, (𝜎2

𝑖−𝜏 2𝑖 𝜋𝑔(𝑖)(1−𝜋𝑔(𝑖)))P(𝐺 = 𝑖))

To show this, we observe that

E[1(𝐺 = 𝑖)(𝒴(𝜂0)− 𝜏𝑖1(𝑆 = 0))]

=E[𝒴(𝜂0)− 𝜏𝑖1(𝑆 = 0)|𝐺 = 𝑖]P(𝐺 = 𝑖)

=(E[𝒴(𝜂0)|𝐺 = 𝑖]− 𝜏𝑖E[1(𝑆 = 0)|𝐺 = 𝑖])P(𝐺 = 𝑖)

=(E[𝒴(𝜂0)|𝐺 = 𝑖]− 𝜏𝑖𝜋𝑔(𝑖))P(𝐺 = 𝑖) = 0 Lem. 𝐵.4.1

𝑣𝑎𝑟[1(𝐺 = 𝑖)(𝒴(𝜂0)− 𝜏𝑖1(𝑆 = 0))]

=E[1(𝐺 = 𝑖)(𝒴(𝜂0)− 𝜏𝑖1(𝑆 = 0))]2

− (E[1(𝐺 = 𝑖)(𝒴(𝜂0)− 𝜏𝑖1(𝑆 = 0))])2

=E[1(𝐺 = 𝑖)(𝒴(𝜂0)− 𝜏𝑖1(𝑆 = 0))]2

=E[1(𝐺 = 𝑖)(𝒴(𝜂0)− 𝜏𝑖1(𝑆 = 0))2] 1(𝐺 = 𝑖) ∈ {0, 1}
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=E[(𝒴(𝜂0)− 𝜏𝑖1(𝑆 = 0))2|𝐺 = 𝑖]P(𝐺 = 𝑖)

=
{︀
E[𝒴2(𝜂0)|𝐺 = 𝑖] + 𝜏 2𝑖 E[1(𝑆 = 0)|𝐺 = 𝑖]

−2𝜏𝑖E[𝒴(𝜂0)1(𝑆 = 0)|𝐺 = 𝑖]}P(𝐺 = 𝑖) 1(𝑆 = 0) ∈ {0, 1}

=
{︀
𝑣𝑎𝑟[𝒴(𝜂0)|𝐺 = 𝑖] + (E[𝒴(𝜂0)|𝐺 = 𝑖])2 + 𝜏 2𝑖 𝜋𝑔(𝑖)

−2𝜏𝑖𝜋𝑔(𝑖)E[𝒴(𝜂0)|𝐺 = 𝑖, 𝑆 = 0]}P(𝐺 = 𝑖)

=
{︀
𝜎2
𝑖 + 𝜏 2𝑖 𝜋𝑔(𝑖)

2 + 𝜏 2𝑖 𝜋𝑔(𝑖)− 2𝜏 2𝑖 𝜋𝑔(𝑖)
}︀
P(𝐺 = 𝑖) Asmp. 𝐵.4.2, Lem. 𝐵.4.1

=(𝜎2
𝑖 − 𝜏 2𝑖 𝜋𝑔(𝑖)(1− 𝜋𝑔(𝑖)))P(𝐺 = 𝑖) <∞

Therefore, from central limit theorem,

√
𝑁

[︃
1

𝑁

∑︁
𝑗

1(𝐺 = 𝑖)(𝒴(𝜂0)− 𝜏𝑖1(𝑆 = 0))

]︃
𝑑−→ 𝒩 (0, (𝜎2

𝑖−𝜏 2𝑖 𝜋𝑔(𝑖)(1−𝜋𝑔(𝑖)))P(𝐺 = 𝑖))

Stage 2 — Proving the asymptotic normality of the cross-fitted estimator, 𝑌 (𝜂, �̂�𝑔)

With asymptotic normality of the oracle estimator shown above in Stage 1, we can

show the asymptotic normality of the cross-fitted estimator (i.e. our estimator) by

decomposing its error into the error of the oracle estimator and the difference between

our estimator and the oracle estimator:

√
𝑁(𝜏 𝑖 − 𝜏𝑖) =

√
𝑁(𝜏 𝑖0 − 𝜏𝑖) +

√
𝑁(𝜏 𝑖 − 𝜏 𝑖0)

=
√
𝑁(𝜏 𝑖0 − 𝜏𝑖) +

√
𝑁

∑︀
𝑚

∑︀
𝑗∈𝐼𝑚 1(𝐺𝑗 = 𝑖)(𝒴𝑗(𝜂𝑚)− 𝒴𝑗(𝜂0))∑︀

𝑗 1(𝐺𝑗 = 𝑖, 𝑆𝑗 = 0)

=
√
𝑁(𝜏 𝑖0 − 𝜏𝑖) +

∑︀
𝑚

1√
𝑁

∑︀
𝑗∈𝐼𝑚 1(𝐺𝑗 = 𝑖)(𝒴𝑗(𝜂𝑚)− 𝒴𝑗(𝜂0))
1
𝑁

∑︀
𝑗 1(𝐺𝑗 = 𝑖, 𝑆𝑗 = 0)

The asymptotic distribution of the cross-fitted estimator therefore hinges on the

asymptotic property of 1√
𝑁

∑︀
𝑗∈𝐼𝑚 1(𝐺𝑗 = 𝑖)(𝒴𝑗(𝜂𝑚)− 𝒴𝑗(𝜂0)), which in turn depends

on the convergence property of the nuisance function estimate 𝜂𝑚 and its influence
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on the signal 𝒴. We therefore restate the last required assumption governing the

convergence properties of 𝜂𝑚:

Assumption B.3.5 (Properties of the nuisance function estimators). Let 𝜂(𝑛) be a

sequence of estimators for 𝜂 indexed by the size of the cross-fitting training fold 𝑛.

We assume that there exists

• 𝜖𝑛 = 𝑜𝑃 (1), a sequence of positive numbers

• 𝒯𝑛, a sequence of nuisance function vector sets in the neighborhood of 𝜂0 =

(𝑔10, 𝑔00, 𝑒10, 𝑝0) satisfying P(𝜂(𝑛) ∈ 𝒯𝑛) ≥ 1− 𝜖𝑛

• g𝑛, e𝑛,p𝑛, sequences of worst root mean square errors for the nuisance functions

𝑔1, 𝑔0, 𝑒1, 𝑝, defined as follows:

g𝑛 := max
𝑎∈{0,1}

sup
𝜂∈𝒯𝑛

√︀
E[𝑔𝑎(𝑋)− 𝑔𝑎0(𝑋)]2

e𝑛 := sup
𝜂∈𝒯𝑛

√︀
E[𝑒1(𝑋)− 𝑒10(𝑋)]2

p𝑛 := sup
𝜂∈𝒯𝑛

√︀
E[𝑝(𝑋)− 𝑝0(𝑋)]2

so that the following assumptions hold:

Assumption A: (Rate of nuisance error)

g𝑛 ∨ e𝑛 ∨ p𝑛 = 𝑜𝑃 (1)

Assumption B: (Rate of nuisance error product)

√
𝑛g𝑛(e𝑛 ∨ p𝑛) = 𝑜𝑃 (1)

Assumption C: (Bounded nuisance estimates)

sup
𝜂∈∪∞

𝑛=1𝒯𝑛

(︂
max
𝑎∈{0,1}

sup
𝑥∈𝒳
|𝑔𝑎(𝑥)| ∨ sup

𝑥∈𝒳

⃒⃒⃒⃒
1

𝑝(𝑥)

⃒⃒⃒⃒
∨ sup

𝑥∈𝒳

⃒⃒⃒⃒
1

𝑒1(𝑥)

⃒⃒⃒⃒
∨ sup

𝑥∈𝒳

⃒⃒⃒⃒
1

𝑒0(𝑥)

⃒⃒⃒⃒)︂
= 𝒞 <∞
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Based on the assumptions above, we have the following bounds on the convergence

rate of the signals when the nuisance function estimates are in the high-probability

neighborhood, 𝒯𝑛:

Lemma B.4.3 (Bounds on bias of signal). Under Assumptions B.3.5.B and B.3.5.C

√
𝑛 sup

𝜂∈𝒯𝑛
|E[1(𝐺 = 𝑖)(𝒴(𝜂)− 𝒴(𝜂0))]| = 𝑜𝑃 (1)

Lemma B.4.4 (Bounds on MSE of signal). Under Assumptions B.3.1, B.3.3, B.3.4,

B.3.5.A and B.3.5.C

sup
𝜂∈𝒯𝑛

E |1(𝐺 = 𝑖)(𝒴(𝜂)− 𝒴(𝜂0))|2 = 𝑜𝑃 (1)

which in turn implies that 1√
𝑁

∑︀
𝑗∈𝐼𝑚 1(𝐺𝑗 = 𝑖)(𝒴𝑗(𝜂𝑚)− 𝒴𝑗(𝜂0)) converges to zero in

probability:

Lemma B.4.5 (Numerator of difference is 𝑜𝑃 (1)). Under Assumptions B.3.1, B.3.3,

B.3.4 and B.3.5,

1√
𝑁

∑︁
𝑗∈𝐼𝑚

1(𝐺𝑗 = 𝑖)(𝒴𝑗(𝜂𝑚)− 𝒴𝑗(𝜂0)) = 𝑜𝑃 (1), ∀𝑚 ∈ {1, 2, ...,𝑀}

The proofs for Lemmas B.4.3 to B.4.5 are more labor-intensive and we defer these

proofs to later subsections. Based on these lemmas, we arrive at the main result of

Stage 2.

Theorem B.4.1 (Asymptotic normality of the cross-fitted transported GATE estimator).

Under Assumptions B.3.1 - B.3.5,

√
𝑁(𝜏 𝑖 − 𝜏𝑖)

𝑑−→ 𝒩
(︂
0,

𝜎2
𝑖 − 𝜏 2𝑖 𝜋𝑔(𝑖)(1− 𝜋𝑔(𝑖))

𝜋𝑔(𝑖)2P(𝐺 = 𝑖)

)︂
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Proof.

√
𝑁(𝜏 𝑖 − 𝜏𝑖)

=
√
𝑁(𝜏 𝑖0 − 𝜏𝑖) +

√
𝑁(𝜏 𝑖 − 𝜏 𝑖0)

=
√
𝑁(𝜏 𝑖0 − 𝜏𝑖) +

√
𝑁

∑︀
𝑚

∑︀
𝑗∈𝐼𝑚 1(𝐺𝑗 = 𝑖)(𝒴𝑗(𝜂𝑚)− 𝒴𝑗(𝜂0))∑︀

𝑗 1(𝐺𝑗 = 𝑖, 𝑆𝑗 = 0)

=
√
𝑁(𝜏 𝑖0 − 𝜏𝑖) +

∑︀
𝑚

1√
𝑁

∑︀
𝑗∈𝐼𝑚 1(𝐺𝑗 = 𝑖)(𝒴𝑗(𝜂𝑚)− 𝒴𝑗(𝜂0))
1
𝑁

∑︀
𝑗 1(𝐺𝑗 = 𝑖, 𝑆𝑗 = 0)

𝑝−→ 0
𝑝−→ P(𝐺 = 𝑖, 𝑆 = 0)

Lem. 𝐵.4.5

WLLN

𝑑−→𝒩
(︂
0,

𝜎2
𝑖 − 𝜏 2𝑖 𝜋𝑔(𝑖)(1− 𝜋𝑔(𝑖))

𝜋𝑔(𝑖)2P(𝐺 = 𝑖)

)︂
Prop. 𝐵.4.1

Note that Theorem B.4.1 is simply Theorem B.3.1, which is the primary result of this

section, with the variance explicitly stated. Thus, Theorem B.3.1 is proven.

B.4.3 Proof for Lemmas B.4.3 and B.4.4

First, we prove Lemmas B.4.3 and B.4.4, which will be necessary for Lemma B.4.5.

Recall that Lemma B.4.5 was essential for the proof of the asymptotic normality result

in Theorem B.4.1.

Lemma B.4.3 (Bounds on bias of signal). Under Assumptions B.3.5.B and B.3.5.C

√
𝑛 sup

𝜂∈𝒯𝑛
|E[1(𝐺 = 𝑖)(𝒴(𝜂)− 𝒴(𝜂0))]| = 𝑜𝑃 (1)

Lemma B.4.4 (Bounds on MSE of signal). Under Assumptions B.3.1, B.3.3, B.3.4,

B.3.5.A and B.3.5.C

sup
𝜂∈𝒯𝑛

E |1(𝐺 = 𝑖)(𝒴(𝜂)− 𝒴(𝜂0))|2 = 𝑜𝑃 (1)

Proof. We first define partial unweighted signal functionals for the two counterfactual

outcomes
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Definition B.4.3 (Partial unweighted signal functionals).

𝒴1(𝜂) :=

[︂
(1− 𝑆)𝑔1(𝑋) + 𝑆

1− 𝑝(𝑋)

𝑝(𝑋)

𝐴(𝑌 − 𝑔1(𝑋))

𝑒1(𝑋)

]︂
𝒴0(𝜂) :=

[︂
(1− 𝑆)𝑔0(𝑋) + 𝑆

1− 𝑝(𝑋)

𝑝(𝑋)

(1− 𝐴)(𝑌 − 𝑔0(𝑋))

𝑒0(𝑋)

]︂
⇒ 𝒴(𝜂) = 𝒴1(𝜂)− 𝒴0(𝜂)

At a high level, we will prove the above lemmas by decomposing the errors of sig-

nal functionals into simpler terms that can be bounded by standard concentration

inequalities. This idea will be repeated for both the bias and MSE of the signals.

To simplify the analysis, we can split up the unweighted signal into “partial signals”

(for the treatment and control groups). Therefore, we set out to show the following

lemmas:

Lemma B.4.6 (Bounds on bias of partial signal). Under Assumptions B.3.5.B and

B.3.5.C

√
𝑛 sup

𝜂∈𝒯𝑛

⃒⃒
E[1(𝐺 = 𝑖)(𝒴1(𝜂)− 𝒴1(𝜂0))]

⃒⃒
= 𝑜𝑃 (1)

√
𝑛 sup

𝜂∈𝒯𝑛

⃒⃒
E[1(𝐺 = 𝑖)(𝒴0(𝜂)− 𝒴0(𝜂0))]

⃒⃒
= 𝑜𝑃 (1)

Lemma B.4.7 (Bounds on MSE of partial signal). Under Assumptions B.3.1, B.3.3,

B.3.4, B.3.5.A and B.3.5.C

sup
𝜂∈𝒯𝑛

E
⃒⃒
1(𝐺 = 𝑖)(𝒴1(𝜂)− 𝒴1(𝜂0))

⃒⃒2
= 𝑜𝑃 (1)

sup
𝜂∈𝒯𝑛

E
⃒⃒
1(𝐺 = 𝑖)(𝒴0(𝜂)− 𝒴0(𝜂0))

⃒⃒2
= 𝑜𝑃 (1)

In the following subsections, we prove the 𝒴1 part of Lemmas B.4.6 and B.4.7. The

𝒴0 part will follow by symmetry. First, we further define 𝜂(𝑋) = 𝜂0(𝑋) + 𝛿𝜂(𝑋), in
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detail:

𝑔1(𝑋) = 𝑔10(𝑋) + 𝛿𝑔1(𝑋)

𝑝(𝑋) = 𝑝0(𝑋) + 𝛿𝑝(𝑋)

𝑒(𝑍) = 𝑒0(𝑋) + 𝛿𝑒(𝑋)

so that (omitting the parameter 𝑋 for brevity),

𝒴1(𝜂)− 𝒴1(𝜂0)

=

[︂
(1− 𝑆)(𝑔10 + 𝛿𝑔1) +

1− 𝑝0 − 𝛿𝑝
𝑝0 + 𝛿𝑝

𝑆𝐴(𝑌 − 𝑔10 − 𝛿𝑔1)

𝑒0 + 𝛿𝑒

]︂
−
[︂
(1− 𝑆)𝑔10 +

1− 𝑝0
𝑝0

𝑆𝐴(𝑌 − 𝑔10)

𝑒0

]︂
=(1− 𝑆)𝛿𝑔1 +

1− 𝑝0 − 𝛿𝑝
𝑝0 + 𝛿𝑝

𝑆𝐴(𝑌 − 𝑔10 − 𝛿𝑔1)

𝑒0 + 𝛿𝑒
− 1− 𝑝0

𝑝0

𝑆𝐴(𝑌 − 𝑔10 − 𝛿𝑔1)

𝑒0
− 1− 𝑝0

𝑝0

𝑆𝐴

𝑒0
𝛿𝑔1

=

(︂
(1− 𝑆)− 1− 𝑝0

𝑝0

𝑆𝐴

𝑒0

)︂
𝛿𝑔1 +

(︂
1− 𝑝0 − 𝛿𝑝

(𝑝0 + 𝛿𝑝)(𝑒0 + 𝛿𝑒)
− 1− 𝑝0

𝑝0𝑒0

)︂
𝑆𝐴(𝑌 − 𝑔10 − 𝛿𝑔1)

=

(︂
(1− 𝑆)− 1− 𝑝0

𝑝0

𝑆𝐴

𝑒0

)︂
𝛿𝑔1 −

𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒
(𝑝0 + 𝛿𝑝)(𝑒0 + 𝛿𝑒)𝑝0𝑒0

𝑆𝐴(𝑌 − 𝑔10 − 𝛿𝑔1)

=

(︂
(1− 𝑆)− 1− 𝑝0

𝑝0

𝑆𝐴

𝑒0

)︂
𝛿𝑔1⏟  ⏞  

𝑆1

− 𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒
(𝑝0 + 𝛿𝑝)(𝑒0 + 𝛿𝑒)𝑝0𝑒0

𝑆𝐴(𝑌 − 𝑔10)⏟  ⏞  
𝑆2

+
𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒

(𝑝0 + 𝛿𝑝)(𝑒0 + 𝛿𝑒)𝑝0𝑒0
𝑆𝐴𝛿𝑔1⏟  ⏞  

𝑆3

:=𝑆1 − 𝑆2 + 𝑆3

Proof for Lemma B.4.6

For Lemma B.4.6 we want to bound

⃒⃒
E
[︀
1(𝐺 = 𝑖)(𝒴1(𝜂)− 𝒴1(𝜂0))

]︀⃒⃒
=
⃒⃒
E
[︀
E
[︀
1(𝐺 = 𝑖)

(︀
𝒴1(𝜂)− 𝒴1(𝜂0)

)︀⃒⃒
𝑋
]︀]︀⃒⃒

= |E [1(𝐺 = 𝑖)E [𝑆1 − 𝑆2 + 𝑆3|𝑋]]| 𝐺 is a function of 𝑋

= |E [1(𝐺 = 𝑖) (E [𝑆1|𝑋]− E [𝑆2|𝑋] + E [𝑆3|𝑋])]|
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For the term E[𝑆1|𝑋],

E[𝑆1|𝑋]

=E
[︂(︂

(1− 𝑆)− 1− 𝑝0
𝑝0

𝑆𝐴

𝑒0

)︂
𝛿𝑔1

⃒⃒⃒⃒
𝑋

]︂
=

(︂
(1− E[𝑆|𝑋])− 1− 𝑝0

𝑝0

E[𝑆𝐴|𝑋]

𝑒0

)︂
𝛿𝑔1 𝜂0, 𝛿𝜂 are functions of 𝑋

=

(︂
(1− 𝑝0)−

1− 𝑝0
𝑝0

𝑝0𝑒0
𝑒0

)︂
𝛿𝑔1 = 0

𝑝0(𝑋) = P[𝑆 = 1|𝑋]

𝑒0(𝑋) = P[𝐴 = 1|𝑆 = 1, 𝑋]

For the term E[𝑆2|𝑋]

E[𝑆2|𝑋]

=E
[︂
𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒

(𝑝0 + 𝛿𝑝)(𝑒0 + 𝛿𝑒)𝑝0𝑒0
𝑆𝐴(𝑌 − 𝑔10)

⃒⃒⃒⃒
𝑋

]︂
=
𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒

(𝑝0 + 𝛿𝑝)(𝑒0 + 𝛿𝑒)𝑝0𝑒0
E[𝑆𝐴(𝑌 − 𝑔10) | 𝑋] 𝜂0, 𝛿𝜂 are functions of 𝑋

=
𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒

(𝑝0 + 𝛿𝑝)(𝑒0 + 𝛿𝑒)𝑝0𝑒0
· 0 = 0 𝑔10(𝑋) = E[𝑌 |𝑆 = 1, 𝐴 = 1, 𝑋]

For the term E[𝑆3|𝑋],

E[𝑆3|𝑋]

=E
[︂
𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒

(𝑝0 + 𝛿𝑝)(𝑒0 + 𝛿𝑒)𝑝0𝑒0
𝑆𝐴𝛿𝑔1

⃒⃒⃒⃒
𝑋

]︂
=
𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒

(𝑝0 + 𝛿𝑝)(𝑒0 + 𝛿𝑒)𝑝0𝑒0
E [𝑆𝐴|𝑋] 𝛿𝑔1 𝜂0, 𝛿𝜂 are functions of 𝑋

=
𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒

(𝑝0 + 𝛿𝑝)(𝑒0 + 𝛿𝑒)𝑝0𝑒0
𝑝0𝑒0𝛿𝑔1

𝑝0(𝑋) = P[𝑆 = 1|𝑋]

𝑒0(𝑋) = P[𝐴 = 1|𝑆 = 1, 𝑋]

=
𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒

𝑝𝑒
𝛿𝑔1
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Therefore,

⃒⃒
E
[︀
1(𝐺 = 𝑖)[𝒴1(𝜂)− 𝒴1(𝜂0)]

]︀⃒⃒2
= |E [1(𝐺 = 𝑖) (E[𝑆1|𝑍]− E[𝑆2|𝑍] + E[𝑆3|𝑍])]|2

= |E [1(𝐺 = 𝑖)E[𝑆3|𝑍]]|2

≤ (E |1(𝐺 = 𝑖)E[𝑆3|𝑍]|)2 |𝐸𝐴| ≤ 𝐸|𝐴|

≤ (E |E[𝑆3|𝑍]|)2

=

(︂
E
⃒⃒⃒⃒
𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒

𝑝𝑒
𝛿𝑔1

⃒⃒⃒⃒)︂2

≤
(︂
E
⃒⃒⃒⃒
𝑒0𝛿𝑝
𝑝𝑒

𝛿𝑔1

⃒⃒⃒⃒
+ E

⃒⃒⃒⃒
(1− 𝑝0)𝑝0𝛿𝑒

𝑝𝑒
𝛿𝑔1

⃒⃒⃒⃒
+ E

⃒⃒⃒⃒
(1− 𝑝0)𝛿𝑝𝛿𝑒

𝑝𝑒
𝛿𝑔1

⃒⃒⃒⃒)︂2

Triangular ineq.

≤𝒞4 (E |𝛿𝑝𝛿𝑔1|+ E |𝛿𝑒𝛿𝑔1|+ E |𝛿𝑝𝛿𝑒𝛿𝑔1|)
2 Assmp. 𝐵.3.5.𝐶

=𝒞4
(︂
E|𝛿𝑝𝛿𝑔1|+ E|𝛿𝑒𝛿𝑔1|+

1

2
E|𝛿𝑒||𝛿𝑝𝛿𝑔1|+

1

2
E|𝛿𝑝||𝛿𝑒𝛿𝑔1|

)︂2

≤𝒞4
(︂
E|𝛿𝑝𝛿𝑔1|+ E|𝛿𝑒𝛿𝑔1|+

1

2
E|𝛿𝑝𝛿𝑔1|+

1

2
E|𝛿𝑒𝛿𝑔1 |

)︂2

|𝛿𝑝|, |𝛿𝑒| ≤ 1

=
9

4
𝒞4 (E|𝛿𝑝𝛿𝑔1|+ E|𝛿𝑒𝛿𝑔1|)

2

≤9

4
𝒞4
(︁√︁

E𝛿2𝑝
√︁

E𝛿2𝑔1 +
√︀

E𝛿2𝑒
√︁

E𝛿2𝑔1
)︁2

Hölder’s ineq.

So we have,

√
𝑛 sup

𝜂∈𝒯𝑛

⃒⃒
E1(𝐺 = 𝑖)[𝑌 1(𝜂)− 𝑌 1(𝜂0)]

⃒⃒
≤
√
𝑛 sup

𝜂∈𝒯𝑛

3

2
𝒞2
(︁√︁

E𝛿2𝑝
√︁

E𝛿2𝑔1 +
√︀

E𝛿2𝑒
√︁

E𝛿2𝑔1
)︁

≤3

2
𝒞2
√
𝑛g𝑁 (p𝑁 + e𝑁) Assump. 𝐵.3.5

=𝑜𝑃 (1) Assump. 𝐵.3.5.𝐵
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Proof for Lemma B.4.7

Here we first place bounds on E𝑆2
1 ,E𝑆2

2 and E𝑆2
3 for future use. For the term E𝑆2

1 , we

have,

E𝑆2
1

=E

[︃
E

[︃(︂(︂
(1− 𝑆)− 1− 𝑝0

𝑝0

𝑆𝐴

𝑒0

)︂
𝛿𝑔1

)︂2
⃒⃒⃒⃒
⃒𝑋
]︃]︃

=E

[︃
(1− 𝑝0)

2 E

[︃(︂
1− 𝑆

1− 𝑝0
− 𝑆𝐴

𝑝0𝑒0

)︂2
⃒⃒⃒⃒
⃒𝑋
]︃
𝛿2𝑔1

]︃
𝜂0, 𝛿𝜂 are functions of 𝑋

=E
[︂
(1− 𝑝0)

2 E
[︂
(1− 𝑆)2

(1− 𝑝0)2
+

(𝑆𝐴)2

(𝑝0𝑒0)2

⃒⃒⃒⃒
𝑋

]︂
𝛿2𝑔1

]︂
𝑆 ∈ {0, 1}

=E
[︂
(1− 𝑝0)

2 E
[︂

1− 𝑆

(1− 𝑝0)2
+

𝑆𝐴

(𝑝0𝑒0)2

⃒⃒⃒⃒
𝑋

]︂
𝛿2𝑔1

]︂
1− 𝑆, 𝑆𝐴 ∈ {0, 1}

=E
[︂
(1− 𝑝0)

2

(︂
1

1− 𝑝0
+

1

𝑝0𝑒0

)︂
𝛿2𝑔1

]︂
𝑝0(𝑋) = P[𝑆 = 1|𝑋]

𝑒0(𝑋) = P[𝐴 = 1|𝑆 = 1, 𝑋]

≤ 2

𝜀𝑝𝜀𝑒
E𝛿2𝑔1 Assmp. 𝐵.3.1, 𝐵.3.3

We can similarly bound E𝑆2
2 ,

E𝑆2
2

=E

[︃
E

[︃(︂
𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒

(𝑝0 + 𝛿𝑝)(𝑒0 + 𝛿𝑒)𝑝0𝑒0
𝑆𝐴(𝑌 − 𝑔10)

)︂2
⃒⃒⃒⃒
⃒𝑋
]︃]︃

=E

[︃(︂
𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒

(𝑝0 + 𝛿𝑝)(𝑒0 + 𝛿𝑒)𝑝0𝑒0

)︂2

E
[︀
(𝑆𝐴(𝑌 − 𝑔10))

2
⃒⃒
𝑋
]︀]︃

𝜂0, 𝛿𝜂 are functions of 𝑋

=E

[︃(︂
𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒

(𝑝0 + 𝛿𝑝)(𝑒0 + 𝛿𝑒)𝑝0𝑒0

)︂2

𝑆,𝐴 ∈ {0, 1}

· E
[︀
(𝑌 − 𝑔10)

2
⃒⃒
𝑋,𝑆 = 1, 𝐴 = 1

]︀
P(𝑆 = 1, 𝐴 = 1|𝑋)

]︀
≤𝐸

[︃(︂
𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒

(𝑝0 + 𝛿𝑝)(𝑒0 + 𝛿𝑒)𝑝0𝑒0

)︂2

�̄�2P(𝑆 = 1, 𝐴 = 1|𝑋)

]︃
Assmp. 𝐵.3.4

=𝐸

[︃(︂
𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒

𝑝𝑒𝑝0𝑒0

)︂2

�̄�2𝑝0𝑒0

]︃
𝑝0(𝑋) = P[𝑆 = 1|𝑋]

𝑒0(𝑋) = P[𝐴 = 1|𝑆 = 1, 𝑋]
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≤ �̄�2�̄�
4

𝜀𝑝𝜀𝑒
E |𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒|2 Assmp. 𝐵.3.1, 𝐵.3.3, 𝐵.3.5.𝐶

≤ �̄�2�̄�
4

𝜀𝑝𝜀𝑒
E [𝑒0|𝛿𝑝|+ (1− 𝑝0)𝑝0|𝛿𝑒|+ (1− 𝑝0)|𝛿𝑝𝛿𝑒|]2 Triangular ineq.

≤ �̄�2�̄�
4

𝜀𝑝𝜀𝑒
E [|𝛿𝑝|+ |𝛿𝑒|+ |𝛿𝑝𝛿𝑒|]2

=
�̄�2�̄�

4

𝜀𝑝𝜀𝑒
E
[︂
|𝛿𝑝|+ |𝛿𝑒|+

1

2
|𝛿𝑝||𝛿𝑒|+

1

2
|𝛿𝑝||𝛿𝑒|

]︂2
≤ �̄�2�̄�

4

𝜀𝑝𝜀𝑒
E
[︂
|𝛿𝑝|+ |𝛿𝑒|+

1

2
|𝛿𝑝|+

1

2
|𝛿𝑒|
]︂2

|𝛿𝑝|, |𝛿𝑒| ≤ 1

=
9

4

�̄�2�̄�
4

𝜀𝑝𝜀𝑒
E [|𝛿𝑝|+ |𝛿𝑒|]2

=
9

4

�̄�2�̄�
4

𝜀𝑝𝜀𝑒

[︀
E𝛿2𝑝 + E𝛿2𝑒 + 2E|𝛿𝑝||𝛿𝑒|

]︀
≤9

4

�̄�2�̄�
4

𝜀𝑝𝜀𝑒

[︁
E𝛿2𝑝 + E𝛿2𝑒 + 2

√︁
E𝛿2𝑝
√︀

E𝛿2𝑒
]︁

Cauchy-Schwartz

=
9

4

�̄�2�̄�
4

𝜀𝑝𝜀𝑒

(︁√︁
E𝛿2𝑝 +

√︀
E𝛿2𝑒
)︁2

Finally, we bound E𝑆2
3 ,

E𝑆2
3

=E

[︃
E

[︃(︂
𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒

(𝑝0 + 𝛿𝑝)(𝑒0 + 𝛿𝑒)𝑝0𝑒0
𝑆𝐴𝛿𝑔1

)︂2
⃒⃒⃒⃒
⃒𝑋
]︃]︃

=E

[︃(︂
𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒

(𝑝0 + 𝛿𝑝)(𝑒0 + 𝛿𝑒)𝑝0𝑒0
𝛿𝑔1

)︂2

E
[︀
(𝑆𝐴)2

⃒⃒
𝑋
]︀]︃

𝜂0, 𝛿𝜂 are functions of 𝑋

=E

[︃(︂
𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒

(𝑝0 + 𝛿𝑝)(𝑒0 + 𝛿𝑒)𝑝0𝑒0
𝛿𝑔1

)︂2

E [𝑆𝐴|𝑋]

]︃
𝑆𝐴 ∈ {0, 1}

=E

[︃(︂
𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒

𝑝𝑒𝑝0𝑒0
𝛿𝑔1

)︂2

𝑝0𝑒0

]︃
𝑝0(𝑋) = P[𝑆 = 1|𝑋]

𝑒0(𝑋) = P[𝐴 = 1|𝑆 = 1, 𝑋]

≤ �̄�
4

𝜀𝑝𝜀𝑒
E |(𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒) 𝛿𝑔1|

2 Assmp. 𝐵.3.1, 𝐵.3.3, 𝐵.3.5.𝐶

=
�̄�

4

𝜀𝑝𝜀𝑒
E
[︀
|𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒|2|𝛿𝑔1|2

]︀
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≤ �̄�
4

𝜀𝑝𝜀𝑒
E
[︀
(|𝑒0𝛿𝑝|+ |(1− 𝑝0)𝑝0𝛿𝑒|+ |(1− 𝑝0)𝛿𝑝𝛿𝑒|)2 |𝛿𝑔1|2

]︀
Triangular ineq.

≤9�̄�
4

𝜀𝑝𝜀𝑒
E𝛿2𝑔1 0 ≤ 𝑝0, 𝑒0, |𝛿𝑝|, |𝛿𝑒| ≤ 1

From the above, we have

E
⃒⃒
1(𝐺 = 𝑖)(𝒴1(𝜂)− 𝒴1(𝜂0))

⃒⃒2
=E|1(𝐺 = 𝑖)||𝑆1 − 𝑆2 + 𝑆3|2

≤E|𝑆1 − 𝑆2 + 𝑆3|2

≤E(|𝑆1|+ |𝑆2|+ |𝑆3|)2 Triangular ineq.

=
[︀
E𝑆2

1 + E𝑆2
2 + E𝑆2

3 + 2E|𝑆1𝑆2|+ 2E|𝑆1𝑆3|+ 2E|𝑆2𝑆3|
]︀

≤
[︀
E𝑆2

1 + E𝑆2
2 + E𝑆2

3+

2
√︀

E|𝑆1|2
√︀

E|𝑆2|2 + 2
√︀

E|𝑆1|2
√︀
E|𝑆3|2 + 2

√︀
E|𝑆2|2

√︀
E|𝑆3|2

]︁
Cauchy-Schwartz

=

[︂√︁
E𝑆2

1 +
√︁
E𝑆2

1 +
√︁

E𝑆2
1

]︂2

≤

⎡⎣√︃ 2

𝜀𝑝𝜀𝑒

√︁
E𝛿2𝑔1 +

√︃
9

4

�̄�2�̄�
4

𝜀𝑝𝜀𝑒

(︁√︁
E𝛿2𝑝 +

√︀
E𝛿2𝑒
)︁
+

√︃
9�̄�

4

𝜀𝑝𝜀𝑒

√︁
E𝛿2𝑔1

⎤⎦2

≤𝐶
[︁√︁

E𝛿2𝑔1 +
√︁

E𝛿2𝑝 +
√︀

E𝛿2𝑒
]︁2

𝐶 :=

(︁
3�̄�

2
+
√
2
)︁2

𝜀𝑝𝜀𝑒
∨ 9

4

�̄�2�̄�
4

𝜀𝑝𝜀𝑒

So we have,

sup
𝜂∈𝒯𝑛

E
⃒⃒
1(𝐺 = 𝑖)(𝒴1(𝜂)− 𝒴1(𝜂0))

⃒⃒2
≤𝐶 sup

𝜂∈𝒯𝑛

[︁√︁
E𝛿2𝑔1 +

√︁
E𝛿2𝑝 +

√︀
E𝛿2𝑒
]︁2

≤𝐶
[︂
sup
𝜂∈𝒯𝑛

√︁
E𝛿2𝑔1 + sup

𝜂∈𝒯𝑛

√︁
E𝛿2𝑝 + sup

𝜂∈𝒯𝑛

√︀
E𝛿2𝑒
]︂2

≤𝐶 [g𝑛 + p𝑛 + e𝑛]
2 Assmp. 𝐵.3.5

≤9𝐶 [g𝑛 ∨ p𝑛 ∨ e𝑛]
2 = 𝑜𝑃 (1) Assmp. 𝐵.3.5.𝐴
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Assembling the proofs for Lemmas B.4.3 and B.4.4

For Lemma B.4.3:

√
𝑛 sup

𝜂∈𝒯𝑛
|E[1(𝐺 = 𝑖)(𝒴(𝜂)− 𝒴(𝜂0))]|

=
√
𝑛 sup

𝜂∈𝒯𝑛

⃒⃒
E[1(𝐺 = 𝑖)(𝒴1(𝜂)− 𝒴1(𝜂0))]

− E[1(𝐺 = 𝑖)(𝒴0(𝜂)− 𝒴0(𝜂0))]
⃒⃒

≤
√
𝑛 sup

𝜂∈𝒯𝑛

{︀⃒⃒
E[1(𝐺 = 𝑖)(𝒴1(𝜂)− 𝒴1(𝜂0))]

⃒⃒
+
⃒⃒
E[1(𝐺 = 𝑖)(𝒴0(𝜂)− 𝒴0(𝜂0))]

⃒⃒}︀
Triangular ineq.

≤
√
𝑛 sup

𝜂∈𝒯𝑛

⃒⃒
E[1(𝐺 = 𝑖)(𝒴1(𝜂)− 𝒴1(𝜂0))]

⃒⃒
+
√
𝑛 sup

𝜂∈𝒯𝑛

⃒⃒
E[1(𝐺 = 𝑖)(𝒴0(𝜂)− 𝒴0(𝜂0))]

⃒⃒
=𝑜𝑃 (1) Lem. 𝐵.4.6

For Lemma B.4.4:

sup
𝜂∈𝒯𝑛

E |1(𝐺 = 𝑖)(𝒴(𝜂)− 𝒴(𝜂0))|2

= sup
𝜂∈𝒯𝑛

E
⃒⃒
1(𝐺 = 𝑖)(𝒴1(𝜂)− 𝒴1(𝜂0))− 1(𝐺 = 𝑖)(𝒴0(𝜂)− 𝒴0(𝜂0))

⃒⃒2
≤ sup

𝜂∈𝒯𝑛
E
{︀⃒⃒
1(𝐺 = 𝑖)(𝒴1(𝜂)− 𝒴1(𝜂0))

⃒⃒
+
⃒⃒
1(𝐺 = 𝑖)(𝒴0(𝜂)− 𝒴0(𝜂0))

⃒⃒}︀2
Triangular ineq.

= sup
𝜂∈𝒯𝑛

{︁
E
⃒⃒
1(𝐺 = 𝑖)(𝒴1(𝜂)− 𝒴1(𝜂0))

⃒⃒2
+ E

⃒⃒
1(𝐺 = 𝑖)(𝒴0(𝜂)− 𝒴0(𝜂0))

⃒⃒2
+

2E
⃒⃒
1(𝐺 = 𝑖)(𝒴1(𝜂)− 𝒴1(𝜂0))

⃒⃒ ⃒⃒
1(𝐺 = 𝑖)(𝒴0(𝜂)− 𝒴0(𝜂0))

⃒⃒}︀
≤ sup

𝜂∈𝒯𝑛

{︁
E
⃒⃒
1(𝐺 = 𝑖)(𝒴1(𝜂)− 𝒴1(𝜂0))

⃒⃒2
+ E

⃒⃒
1(𝐺 = 𝑖)(𝒴0(𝜂)− 𝒴0(𝜂0))

⃒⃒2
+ Cauchy-Schwartz

2

√︁
E |1(𝐺 = 𝑖)(𝒴1(𝜂)− 𝒴1(𝜂0))|2

√︁
E |1(𝐺 = 𝑖)(𝒴0(𝜂)− 𝒴0(𝜂0))|2

}︂
≤ sup

𝜂∈𝒯𝑛
E
⃒⃒
1(𝐺 = 𝑖)(𝒴1(𝜂)− 𝒴1(𝜂0))

⃒⃒2
+ sup

𝜂∈𝒯𝑛
E
⃒⃒
1(𝐺 = 𝑖)(𝒴0(𝜂)− 𝒴0(𝜂0))

⃒⃒2
+

2
√︂

sup
𝜂∈𝒯𝑛

E |1(𝐺 = 𝑖)(𝒴1(𝜂)− 𝒴1(𝜂0))|2
√︂

sup
𝜂∈𝒯𝑛

E |1(𝐺 = 𝑖)(𝒴0(𝜂)− 𝒴0(𝜂0))|2
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=𝑜𝑃 (1) Lem. 𝐵.4.7

B.4.4 Proof for Lemma B.4.5

Now that we have shown Lemmas B.4.3 and B.4.4, it remains to show Lemma B.4.5.

Lemma B.4.5 (Numerator of difference is 𝑜𝑃 (1)). Under Assumptions B.3.1, B.3.3,

B.3.4 and B.3.5,

1√
𝑁

∑︁
𝑗∈𝐼𝑚

1(𝐺𝑗 = 𝑖)(𝒴𝑗(𝜂𝑚)− 𝒴𝑗(𝜂0)) = 𝑜𝑃 (1), ∀𝑚 ∈ {1, 2, ...,𝑀}

Proof. First we observe

1√
𝑁

∑︁
𝑗∈𝐼𝑚

1(𝐺𝑗 = 𝑖)(𝒴𝑗(𝜂𝑚)− 𝒴𝑗(𝜂0))

=
1√
𝑁

[︃∑︁
𝑗∈𝐼𝑚

1(𝐺𝑗 = 𝑖)(𝒴𝑗(𝜂𝑚)− 𝒴𝑗(𝜂0))− E[1(𝐺 = 𝑖)(𝒴(𝜂𝑚)− 𝒴(𝜂0))]

]︃
+

1√
𝑁

∑︁
𝑗∈𝐼𝑚

E[1(𝐺 = 𝑖)(𝒴(𝜂𝑚)− 𝒴(𝜂0))]

=
𝑁𝑀√
𝑁

[︃(︃
1

𝑁𝑀

∑︁
𝑗∈𝐼𝑚

1(𝐺𝑗 = 𝑖)(𝒴𝑗(𝜂𝑚)− 𝒴𝑗(𝜂0))

)︃
− E[1(𝐺 = 𝑖)(𝒴(𝜂𝑚)− 𝒴(𝜂0))]

]︃
⏟  ⏞  

𝑅1(𝑚)

+

𝑁𝑀√
𝑁
E[1(𝐺 = 𝑖)(𝒴(𝜂𝑚)− 𝒴(𝜂0))]⏟  ⏞  

𝑅2(𝑚)

:=𝑅1(𝑚) +𝑅2(𝑚)

We define the event ℰ𝑁 as ∩𝑘

(︀
𝜂𝑚 ∈ 𝒯𝑁𝑐

𝑀

)︀
, i.e. all 𝑀 nuisance function estimates

falling into the high-probability neighborhood where Lemmas B.4.3 and B.4.4 apply.
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From union bound,

1− P(ℰ𝑁) ≤
∑︁
𝑘

P(𝜂𝑚 /∈ 𝒯𝑁𝑐
𝑀
) ≤ 𝐾𝜖𝑁𝑐

𝑀
= 𝑜𝑃 (1) ∵ 𝜖𝑛 = 𝑜𝑃 (1)

Conditional on ℰ𝑁 and the data complementary to fold 𝑚, which we denote as 𝐷𝑚,

we have for any 𝜖 > 0,

P(|𝑅1(𝑚)| ≥ 𝜖|ℰ𝑁 , 𝐷𝑚)

=P

(︃⃒⃒⃒⃒
⃒
(︃

1

𝑁𝑀

∑︁
𝑗∈𝐼𝑚

1(𝐺𝑗 = 𝑖)(𝒴𝑗(𝜂𝑚)− 𝒴𝑗(𝜂0))

)︃
−

E[1(𝐺 = 𝑖)(𝒴(𝜂𝑚)− 𝒴(𝜂0))]
⃒⃒⃒⃒
≥
√
𝑁

𝑁𝑀

𝜖

⃒⃒⃒⃒
⃒ℰ𝑁 , 𝐷𝑚

)︃

≤𝑁2
𝑀

𝑁𝜖2
𝑣𝑎𝑟

[︃
1

𝑁𝑀

∑︁
𝑗∈𝐼𝑚

1(𝐺𝑗 = 𝑖)(𝒴𝑗(𝜂𝑚)− 𝒴𝑗(𝜂0))

⃒⃒⃒⃒
⃒ℰ𝑁 , 𝐷𝑚

]︃
Chebyshev ineq.

=
𝑁𝑀

𝑁𝜖2
𝑣𝑎𝑟 [1(𝐺 = 𝑖)(𝒴(𝜂𝑚)− 𝒴(𝜂0))|ℰ𝑁 , 𝐷𝑚]

≤ 1

𝑀𝜖2
E
[︀
(1(𝐺 = 𝑖)(𝒴(𝜂𝑚)− 𝒴(𝜂0)))2

⃒⃒
ℰ𝑁 , 𝐷𝑚

]︀
≤ 1

𝑀𝜖2
sup

𝜂∈𝒯𝑁𝑀

E
[︀
(1(𝐺 = 𝑖)(𝒴(𝜂)− 𝒴(𝜂0)))2

⃒⃒
𝐷𝑚

]︀
𝜂𝑚 ∈ 𝒯𝑁𝑐

𝑀
under ℰ𝑁

≤ 1

𝑀𝜖2
sup

𝜂∈𝒯𝑁𝑀

E (1(𝐺 = 𝑖)(𝒴(𝜂)− 𝒴(𝜂0)))2 Fold 𝑚 is independent of 𝐷𝑚

=
1

𝑀𝜖2
𝑜𝑃 (1) = 𝑜𝑃 (1) Lem. 𝐵.4.4

Also, conditional on ℰ𝑁 and 𝐷𝑚

|𝑅2(𝑚)| =

⃒⃒⃒⃒
⃒ 𝑁𝑀√

𝑁
√︀

𝑁 𝑐
𝑀

√︀
𝑁 𝑐

𝑀E[1(𝐺 = 𝑖)(𝒴(𝜂𝑚)− 𝒴(𝜂0))]

⃒⃒⃒⃒
⃒ℰ𝑁 , 𝐷𝑚

⃒⃒⃒⃒
⃒

=
1√

𝑀 − 1

√︀
𝑁 𝑐

𝑀 |E[1(𝐺 = 𝑖)(𝒴(𝜂𝑚)− 𝒴(𝜂0))]|ℰ𝑁 , 𝐷𝑚|

≤ 1√
𝑀 − 1

√︀
𝑁 𝑐

𝑀 sup
𝜂∈𝒯𝑁𝑐

𝑀

|E[1(𝐺 = 𝑖)(𝒴(𝜂)− 𝒴(𝜂0))|𝐷𝑚]| 𝜂𝑚 ∈ 𝒯𝑁𝑐
𝑀

under ℰ𝑁

=
1√

𝑀 − 1

√︀
𝑁 𝑐

𝑀 sup
𝜂∈𝒯𝑁𝑐

𝑀

|E[1(𝐺 = 𝑖)(𝒴(𝜂)− 𝒴(𝜂0))]| Fold 𝑚 is independent of 𝐷𝑚
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=
1√

𝑀 − 1
𝑜𝑃 (1) = 𝑜𝑃 (1) Lem. 𝐵.4.3

Which implies that, conditional on ℰ𝑁 and 𝐷𝑚, 𝑅1(𝑚) +𝑅2(𝑚) = 𝑜𝑃 (1). So for any

𝜖 > 0:

P

(︃⃒⃒⃒⃒
⃒ 1√

𝑁

∑︁
𝑗∈𝐼𝑚

1(𝐺𝑗 = 𝑖)(𝒴𝑗(𝜂𝑚)− 𝒴𝑗(𝜂0))

⃒⃒⃒⃒
⃒ > 𝜖

)︃

=P(|𝑅1(𝑚) +𝑅2(𝑚)| ≥ 𝜖)

=P(|𝑅1(𝑚) +𝑅2(𝑚)| ≥ 𝜖|ℰ𝑁)P(ℰ𝑁) + P(|𝑅1(𝑚) +𝑅2(𝑚)| ≥ 𝜖|ℰ̄𝑁)(1− P(ℰ𝑁))

≤P(|𝑅1(𝑚) +𝑅2(𝑚)| ≥ 𝜖|ℰ𝑁) + (1− P(ℰ𝑁))

=

∫︁
P(|𝑅1(𝑚) +𝑅2(𝑚)| ≥ 𝜖|ℰ𝑁 , 𝐷𝑚)𝑑P(𝐷𝑚|ℰ𝑁) + (1− P(ℰ𝑁))

=𝑜𝑃 (1) + 𝑜𝑃 (1) = 𝑜𝑃 (1)

and the lemma is proven.

B.5 Details on WHI Experiments

We assess our algorithm on clinical trial data and observational data available from

the Women’s Health Initiative (WHI). The RCTs were run by the WHI via 40 US

clinical centers from 1993-2005 (1993-1998: enrollment + randomization; 2005: end

of follow-up) on postmenopausal women aged 50-79 years, and the observational

dataset was designed and run in parallel on a similar population. Note that this data

is publicly available to researchers and requires only an application on BIOLINCC

(https://biolincc.nhlbi.nih.gov/studies/whi ctos/).

B.5.1 Data

WHI RCT – There are three clinical trials associated with the WHI. The RCT that we

will be leveraging in this set of experiments is the Postmenopausal Hormone Therapy
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(PHT) trial, which was run on postmenopausal women aged 50-79 years who had an

intact uterus. This trial included a total of 𝑁𝐻𝑇 = 16608 patients. The intervention of

interest was a hormone combination therapy of estrogen and progesterone. Specifically,

post-randomization, the treatment group was given 2.5 mg of medroxyprogesterone as

well as 0.625 mg of estrogen a day. The control group was given a placebo. Finally,

there are several outcomes that were tracked and studied in the principal analysis done

on this trial (Rossouw et al., 2002). These outcomes are of three broad categories: a)

cardiovascular events, including coronary heart disease, which served as a primary

endpoint b) cancer (e.g. endometrial, breast, colorectal, etc.), and c) fractures.

WHI OS – The observational study component of the WHI tracked the medical events

and health habits of 𝑁 = 93676 women. Recruitment for the study began in 1994 and

participants were followed until 2005, i.e. a similar follow-up to the RCT. Follow-up

was done in a similar fashion as in the RCT (i.e. patients would have annual visits, in

addition to a “screening” visit, where they would be given survey forms to fill out to

track any events/outcomes). Thus, the same outcomes, including cancers, fractures,

and cardiovascular events, are tracked in the observational study.

B.5.2 Outcome

The outcome of interest in our analysis is a “global index”, which is a summary

statistic of several outcomes, including coronary heart disease, stroke, pulmonary

embolism, endometrial cancer, colorectal cancer, hip fracture, and death due to other

causes. Events or outcomes are tracked for each patient, and are recorded as “day of

event/outcome” in the data, where the initial time-point for follow-up is the same for

both the RCT and OS. At a high level, the “global index” is essentially the minimum

“event day” when considering all the previously mentioned events.

We binarize the “global index,” by choosing a time point, 𝑡, before the end of follow-up

and letting 𝑌 = 1 if the observed event day is before 𝑡 and 𝑌 = 0 otherwise. Thus, we

are looking at whether the patient will experience the event within some particular

373



period of time or not. We set 𝑡 = 7 years. Note that we sidestep censorship of a

patient before the threshold by defining the outcomes in the following way: 𝑌 = 1

indicates that a patient is observed to have the event before the threshold, and 𝑌 = 0

indicates that a patient is not observed to have the event before the threshold. We

apply this binarization in the same way for both the RCT and OS. Extending our

method to a survival analysis framing is beyond the scope of this chapter, but an

interesting direction for future work.

B.5.3 Intervention

Recall from above that the intervention studied in the RCT was 2.5mg of medrox-

yprogesterone + 0.625 mg of estrogen and the control was a placebo pill. The RCT

was run as an “intention-to-treat” trial. To establish “treatment” and “control” groups

in the OS, we leverage the annual survey data collected from patients and assign a

patient to the treatment group if they confirm usage of both estrogen and progesterone

in the first three years. A patient is assigned to the control group if they deny usage of

both estrogen and progesterone in the first three years. We exclude a patient from the

analysis if she confirms usage of one and not the other OR if the field in the survey

is missing OR if they take some other hormone therapy. We end up with a total of

𝑁𝑜𝑏𝑠 = 33511 patients.

B.5.4 Data Processing + Covariates

We use only covariates that are measured both in the RCT and OS to simplify the

analysis. Because this information is gathered via the same set of questionnaires,

they each indicate the same type of covariate. In other words, there is consistency of

meaning across the same covariates across the RCT and the OS. We end up with a

total of 1576 covariates.
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B.5.5 Details of Experimental Setup

We give a more detailed exposition of the steps in our experimental workflow, which

were described in brief in the corresponding chapter of this thesis.

• Step 0: Replicate the principal results from the PHT trial, given in Table 2 of

(Rossouw et al., 2002), using the WHI OS data. In this step, we fit a doubly

robust estimator of the style given in Appendix B.3.

• Step 1: While treating the WHI OS dataset as the “unbiased” observational

dataset (hence the need for Step 0), simulate additional “biased” observational

datasets by inducing bias into the WHI OS. We construct four additional “biased”

datasets (for a total of five observational datasets, including the WHI OS dataset),

where we use the following procedure to induce selection bias – of the people

who were not exposed to the treatment and did not end up getting the event,

we drop each person with some probability, 𝑝. We set 𝑝 = [0.1, 0.3, 0.5, 0.7] to

get the four additional observational datasets.

This type of selection bias may reflect the following clinical scenario: consider

a patient who is relatively healthy who does not end up taking any hormone

therapy. This patient might enroll initially in the OS, but may drop out or

stop responding to the surveys. If the committee running the study does not

explicitly account for this drop-out rate, then the resultant study will suffer

from selection bias. (Banack et al., 2019) detail additional examples of selection

bias that can occur in observational studies. Importantly, this part is the only

part of our setup that involves any simulation. However, in order to properly

evaluate our method, we need to know which datasets are biased and unbiased

in our set. Thus, we opt to simulate the bias.

• Step 2: Run our procedure over “multiple tasks,” generating confidence intervals

on the treatment effect for different subgroups. To do so, we compile a list

of covariates, taking both from (Schnatz et al., 2017) as well as covariates

with high feature importance in both the propensity score model and response
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surface model from the estimator in Step 0. We generate all pairs from this list

and use each pair to generate four subgroups. We treat two of the subgroups

as validation subgroups and two of them as extrapolated subgroups in that

we “hide” the RCT data in those subgroups when fitting our doubly robust

transported estimator. (This gives us the benefit of knowing the RCT result for

the extrapolated subgroups, which is useful in evaluation). Pairs that do not have

enough support (threshold of 400 observations) in each group are removed. The

total number of “tasks” (or covariate pairs) that we have is 592 (and therefore

2368 subgroups).

• Step 3: Evaluate ExPCS (our method), ExOCS, Simple, and Meta-Analysis for

each of the covariate pairs. Additionally, we evaluate an “oracle” method, which

always selects only the original observational study (i.e. the base WHI OS to

which we have not added any selection bias) and reports the interval estimate

computed on this study. To evaluate these methods, we will treat the RCT point

estimates as “correct.” For each, we compute the following metrics: Length –

length of the confidence interval for the subgroup; Coverage – percentage of

tasks for which the method’s interval covers the RCT point estimate; Unbiased

OS Percentage – across all tasks, the percentage at which our approach retains

the unbiased study after the falsification step.

Note that we utilize sample splitting when running the above procedure. Namely, we

use 50% of the data as a “training” set, where we experiment with different classes of

covariates and different types of bias, and then reserve 50% of the data as a “testing”

set, on which we do the final run of the analysis and report results. All nuisance

functions in the doubly robust estimator are fit with a Gradient Boosting Classifier

with significant regularization. In practice, we found that any highly-regularized

tree-based model works well.

376



B.5.6 Covariate List for Task Generation

Below is the list of covariates used to generate the tasks in Step 2 of our experiment:

• ALCNOW (current alcohol user)

• BMI ≤ 30

• BLACK

• SMOKING (current smoker)

• DIAB (diabetes ever)

• HYPT (hypertension ever)

• BRSTFEED (breastfeeding)

• MSMINWK ≤ 106 (minutes of moderate to strenuous activity per week)

• BRSTBIOP (breast biopsy done)

• RETIRED

• EMPLOYED

• OC (oral contraceptive use ever)

• LIVPRT (live with husband or partner)

• MOMALIVE (natural mother still alive)

• LATREGION-Northern > 40 degrees north

• BKBONE (broke bone ever)

• NUMFALLS

• GRAVID (gravidity)

• AGE ≤ 64
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• ANYMENSA ≤ 51 (age at last bleeding)

• MENOPSEA ≤ 50 (age at last regular period)

• MENO ≤51 (age at menopause)

• LSTPAPDY (days from randomization to last pap smear)

• BMI ≤ 27.7

• TMINWK ≤ 191 (minutes of recreational exercise per week)

• HEIGHT ≤ 161

• WEIGHT ≤ 72

• WAIST ≤ 86

• HIP ≤ 105

• WHR ≤ 0.81 (waist to hip ratio)

• TOTHCAT (HRT duration by category)

• MEDICARE (on medicare)

• HEMOGLBN ≤ 13

• PLATELET ≤ 244

• WBC ≤ 6

• HEMATOCR ≤ 40
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B.6 Details on Semi-Synthetic Experiment (Data Gener-

ation and Model Hyperparameters)

B.6.1 Data Generation

For each simulated dataset, we generate 1 RCT and 𝐾 observational studies. The RCT

is assumed to have covariate values identical to the IHDP dataset but is restricted to

infants with married mothers. For the observational studies, we resample the rows

of the IHDP dataset to the desired sample size 𝑛 = 𝑟𝑛0. The covariate distribution

of the observational studies are made different from the RCT by weighted sampling,

with the relative weights set as

𝑤 = 0.81(male infant)+1(mother smoked)+1(mother worked during pregnancy)

Then, to introduce confounding (in the observational data), we generate 𝑚𝑐 continuous

confounders and 𝑚𝑏 binary confounders. Each continuous confounder is drawn from a

mixture of 0.5𝒩 (0, 1) + 0.5𝒩 (3, 1) in the RCT and (0.25 + 0.5𝐴)𝒩 (3, 1) + (0.75−

0.5𝐴)𝒩 (0, 1) in the observational studies, where 𝐴 is the treatment indicator. Similarly,

each binary confounder is drawn from Bern(0.5) in the RCT and Bern(0.25 + 0.5𝐴) in

the observational studies. In the following, we denote the covariate vector as 𝑋 ∈ R𝑚𝑥

where 𝑚𝑥 = 28 is the number of covariates in the IHDP dataset, and the generated

confounder vector as 𝑍 ∈ R(𝑚𝑐+𝑚𝑏). For brevity, we also denote the vector (𝐴,𝑋⊤)⊤

as �̃�.

For outcome simulation in the datasets, we modify response surface B from Hill (2011)

to account for additional confounding variables. We set the following counterfactual

outcome distributions:

𝑌0 ∼ 𝒩

(︃
exp

[︃(︂
�̃� +

1

2
1

)︂⊤

𝛽

]︃
+ 𝑍⊤𝛾, 1

)︃
𝑌1 ∼ 𝒩 (�̃�

⊤
𝛽 + 𝑍⊤𝛾 + 𝜔, 1),
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where 1 ∈ R(𝑚𝑥+1) is vector of ones, 𝛽 ∈ R(𝑚𝑥+1) is a vector where each element is

randomly sampled from (0, 0.1, 0.2, 0.3, 0.4) with probabilities (0.6, 0.1, 0.1, 0.1, 0.1), 𝛾 ∈

R(𝑚𝑐+𝑚𝑏) is a vector where each element is randomly sampled from (0.1, 0.2, 0.5, 0.75, 1)

with uniform probability, and 𝜔 = 23 is a constant chosen to limit the size of the

GATEs. The observed outcome is then 𝑌 := 𝐴𝑌1 + (1 − 𝐴)𝑌0. We then conceal a

number of confounders, chosen in order from the highest to lowest weighted, from each

observational study to mimic the scenario of unobserved confounding. The number of

concealed confounders in each observational study is denoted as cz = (𝑐𝑧1, 𝑐𝑧2, ..., 𝑐𝑧𝐾).

B.6.2 Hyperparameters

Logistic regression

Hyperparametes Value set

Penalty type ℓ2

Penalty coefficient {1, 0.1, 0.01, 0.001}

Multilayer perceptron regression

Hyperparametes Value set

# of hidden layers

and # of perceptrons
[1, (100)], [2, (50, 50)], [2, (25, 25)]

Activation function ReLU, tanh

Solver Adam

Alpha (1, 0.1, 0.01, 0.001, 0.0001)

Learning rate 0.001

# of epochs (250, 500)
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HS 5.84 3.76 2.48 6.15

Figure B-2: Coverage probabilities of confidence intervals shown as a function of the
number of biased observational datasets (out of five). In the 4/5 biased studies case,
the average interval widths for each approach is shown for two subgroups. We observe
that ExPCS achieves the best balance of interval width and coverage.

Upsampling ratio 1.0 3.0 5.0 10.0

𝑃 (selecting
biased study)

0.98 0.80 0.68 0.60

Table B.1: 𝑃 (selecting biased study) as a function of upsampling ratio

B.7 Additional Semi-Synthetic Experimental Results

An analysis of including biased observational studies: In Figure B-2, we study

coverage probability and width of confidence intervals in the presence of biased

studies. Meta-Analysis intervals approach zero coverage probability as the number of

biased studies increases. Indeed, a fundamental assumption of this approach is that

differences between estimates are only due to random variation, leading to poorer

coverage probability when there are more biased studies. ExOCS allows for elimination

of biased studies in principle through falsification, resulting in improved coverage.

However, it does not maintain the desired threshold of coverage (95%), since biased

estimators may still be included after falsification either due to chance or by being

underpowered. Finally, ExPCS and Simple Union intervals have good coverage across

the board, but as before, ExPCS results in narrower intervals.

Overall, we find that our method is robust to biased studies, yielding a good balance
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between coverage and width. In the case where one has adequate power, ExOCS could

be a reasonable alternative to get narrower intervals for a sacrifice in coverage (even

in the presence of biased studies). However, this implicitly assumes that an estimator

consistent for the validation effects will be consistent for the extrapolated effects. If

this assumption does not hold, then ExOCS will have poor coverage.

Biased estimator selection: In Table B.1, we see that the probability of selecting the

biased estimator goes down with increasing sample size of the observational studies,

reflected by the increasing sample size ratio, 𝑟. This result validates our intuition that

our method is more useful and results in more precise estimates of bias as we obtain

more observational samples.

B.8 Additional related work

Combining observational and experimental data Prior work has sought to combine

RCTs and observational studies for the purpose of more precise estimation of treatment

effects (Rosenman et al., 2020, 2021), or for the purpose of generalizing or transporting

estimates from RCTs to observational populations when overlap holds between the two

(see Degtiar and Rose (2021) for a recent review). In contrast, our work is motivated

by settings where there are populations in the observational studies who are not at all

represented in trials, e.g., due to a lack of eligibility. Kallus et al. (2018) also seek to

combine observational and experimental data to extrapolate beyond tfhe support of

an RCT. They propose to learn a CATE function on observational data, and then

learn a parametric additive correction term on the sample that overlaps between the

RCT and observational data. In contrast to this approach, we do not assume that

confounding can be corrected for, and instead seek to choose an observational estimate

(if one exists) that is already consistent for each sub-population.

Calibrating observational confidence intervals An alternative method for calibration

of confidence intervals for observational studies makes use of negative controls (Lipsitch

et al., 2010), such as drug-outcome pairs known to have no causal relationship. Methods
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range using uses these negative controls to form an empirical null distribution for

callibrated 𝑝-values(Schuemie et al., 2014), and Schuemie et al. (2018) extend this

approach to calibration of confidence intervals. These techniques have been used

in several large-scale observational studies such as the LEGEND-HTN study for

comparing antihypertensive drugs (Suchard et al., 2019). By contrast, our method

does not assume the existence of negative controls, but instead uses a form of positive

control (i.e., validation effects), one that is based on the same underlying treatment

as the extrapolated effect.
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Appendix C

Appendix for Chapter 5

This appendix is organized as follows

• (Section C.1): First, we give a simple 1D example to build intuition for the

theoretical results.

• (Section C.2): In the context of Section 5.3.1, we give a concrete example to

demonstrate the non-identifiability of Ω𝑊 , defined in (5.12). We focus on the

simple case when 𝑊 is one dimensional, and the matrix Ω𝑊 reduces to a single

number 𝜌𝑊 := 𝛽2
𝑊/(𝛽2

𝑊 + 𝜎2
𝑊 ), indicating the signal-to-variance ratio of 𝑊 . We

give an example of an observed distribution for which 𝜌𝑊 is not identified, and

moreover, the optimal predictor with respect to the robustness set 𝐶𝐴(𝜆) is not

identified (see Figure C-2).

• (Section C.3): Proofs for results stated in the corresponding chapter of this

thesis.

• (Section C.4): Additional results (and proofs) for Proxy Targeted Anchor Regres-

sion (PTAR) and Cross-Proxy TAR, deferred from the corresponding chapter of

this thesis.

• (Section C.5): Details for implementation of all experiments

• (Section C.6): Additional synthetic experimental results
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C.1 An example for building intuition

To illustrate the problem, consider the following setup, where we observe 𝐴,𝑋, 𝑌 at

training time, and wish to learn a predictor 𝑦 = 𝛼+ 𝛾𝑥 that will generalize to a new

environment where P𝑡𝑒(𝐴) ̸= P𝑡𝑟(𝐴).

𝐴

𝑌𝑋

Figure C-1: Simple example where 𝑋, 𝑌,𝐴 ∈ R.

Suppose that our data is generated under P𝑡𝑟 as follows

𝐴 = 𝜖𝐴, 𝜖𝐴 ∼ 𝒩 (0, 1)

𝑋 = 𝐴+ 𝜖𝑋 , 𝜖𝑋 ∼ 𝒩 (0, 𝜎2
𝑋)

𝑌 = 𝐴+ 𝜖𝑌 , 𝜖𝑌 ∼ 𝒩 (0, 𝜎2
𝑌 ),

where 𝜖𝐴, 𝜖𝑋 , 𝜖𝑌 are jointly independent. This simple example demonstrates a few

concepts:

• Assuming 𝜎2
𝑋 > 0, the conditional expectation E[𝑌 | 𝑋] changes as the distribu-

tion of 𝐴 changes.

• We can write the residuals 𝑌 −𝑌 as a linear function in 𝐴 and the noise variables.

This holds, even if the errors are non-Gaussian.

• The test population MSE is a convex function of 𝛼, 𝛾.

In particular, we will see that the parameters 𝛼, 𝛾 trade off between the variance of

𝐴 and 𝜖𝑋 : There exists an invariant solution, where 𝛼 = 0, 𝛾* = 1, such that the

MSE is completely independent of 𝐴, but this is only optimal in the setting where

Var(𝐴)→∞.
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Conditional Expectation depends on 𝐴 Starting with the assumption that 𝐴,𝑋, 𝑌

are multivariate Gaussian, we can write down the optimal predictor in the target

environment, supposing that at test time P𝑡𝑒(𝐴)
(d)
= 𝒩 (𝜇𝐴, 𝜎

2
𝐴).

E𝑡𝑒[𝑌 | 𝑋 = 𝑥] = E𝑡𝑒[𝑌 ] +
Cov𝑡𝑒(𝑋, 𝑌 )

Var𝑡𝑒(𝑋)
· (𝑥− E𝑡𝑒[𝑋])

= 𝜇𝐴 +
𝜎2
𝐴

𝜎2
𝐴 + 𝜎2

𝑋⏟  ⏞  
𝛾

·(𝑥− 𝜇𝐴)

= 𝜇𝐴(1− 𝛾) + 𝛾𝑥,

where if 𝜖𝑋 = 0, then 𝛾 = 1 and the optimal solution does not depend on the

parameters of 𝐴, and is given by

E𝑡𝑒[𝑌 |𝑋 = 𝑥] = 𝑥. (C.1)

However, for any 𝜎2
𝑥 > 0, the optimal solution under P𝑡𝑒(𝐴) depends on 𝜇𝐴, 𝜎

2
𝐴.

Rewriting residuals Regardless of whether the Gaussian assumption holds, for a

given predictor 𝑌 = 𝛼+ 𝛾𝑥, we can write the error 𝑌 − 𝑌 as a function that is linear

in 𝐴 and the noise variables

𝑌 − 𝑌 = (𝐴+ 𝜖𝑌 )− 𝛾(𝐴+ 𝜖𝑋)− 𝛼

= 𝐴(1− 𝛾) + (𝜖𝑌 − 𝛾𝜖𝑋 − 𝛼).

Optimizing for a known target distribution The mean squared error E[(𝑌 − 𝑌 )
2
]

can be written as a function of 𝛼, 𝛾, and the mean and variance of 𝐴 under P𝑡𝑒(𝐴).

Here, all expectations are taken with respect to the test distribution.

E𝑡𝑒[(𝑦 − 𝑦)2] = E𝑡𝑒[E𝑡𝑒[(𝑦 − 𝑦)2 | 𝐴]]

= 𝛼2 − 2𝛼E𝑡𝑒[𝐴](1− 𝛾)

+ (1− 𝛾)2E𝑡𝑒[𝐴
2] + 𝛾2𝜎2

𝑥 + 𝜎2
𝑦. (C.2)
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By first-order conditions, this expression is minimized by

𝛼* = 𝜇𝐴(1− 𝛾*) 𝛾* =
𝜎2
𝐴

𝜎2
𝐴 + 𝜎2

𝑋

. (C.3)

When 𝜎2
𝐴 → ∞, then 𝛾* → 1 from Equation (C.3). This is intuitive, because in

Equation (C.2), 𝛾 = 1 renders the MSE functionally independent of the distribution

of 𝐴.

Optimizing for a worst-case distribution Equation (C.3) shows the optimal solution

under a known target distribution, if 𝜇𝐴, 𝜎
2
𝐴 were known in advance. However, a

similar intuition applies to the case where P𝑡𝑒(𝐴) is unknown, but we expect it to

lie in a particular class. Consider interventions of the form 𝑑𝑜(𝐴 := 𝜈), where we

constrain 𝜈 to lie in the set of random variables 𝐶(𝜆) := {𝜈 : E[𝜈2] ≤ 𝜆}. In this case,

our worst-case loss is given by

sup
𝜈∈𝐶(𝜆)

E𝜈 [(𝑌 − 𝑌 )
2
]

= sup
𝜈∈𝐶(𝜆)

(1− 𝛾)
[︀
−2𝛼E[𝜈] + (1− 𝛾)E[𝜈2]

]︀
+ 𝛼2 + 𝛾2𝜎2

𝑋 + 𝜎2
𝑌 ,

where the last line does not depend on 𝜈. We observe that 𝛼* = 0, by analyzing two

cases. First, if 𝛾 = 1, then the first term is eliminated, and the only term that depends

on 𝛼 is 𝛼2. Second, if 𝛾 ̸= 1, then (1− 𝛾)2 > 0, the first term is partially maximized

when E[𝜈2] = 𝜆, and if 𝛼 ̸= 0, then the expression can be made even larger by choosing

a deterministic 𝜈 = ±
√
𝜆 (instead of e.g., a random 𝜈 ∼ 𝒩 (0, 𝜆2)), depending on the

sign of 𝛼(1− 𝛾). From this (and the presence of the 𝛼2 term in the second line) it

follows that 𝛼* = 0, in this case as well. When 𝛼 = 0, the supremum is obtained by

any random or deterministic 𝜈 such that E[𝜈2] = 𝜆.
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With 𝛼* = 0 and taking E[𝜈2] = 𝜆 in the supremum, this expression simplifies to

sup
𝜈∈𝐶(𝜆)

E𝜈 [(𝑌 − 𝑌 )
2
]

= (1− 𝛾)2𝜆+ 𝛾2𝜎2
𝑋 + 𝜎2

𝑌 .

Differentiating with respect to 𝛾, we obtain

𝛾* =
𝜆

𝜎2
𝑋 + 𝜆

.

Here, 𝜆 trades off accuracy and stability; As 𝜆→∞, we recover the solution where

𝛾* = 1, but for situations where 𝜎2
𝑋 is large and 𝜆 is bounded, we are better off

choosing 𝛾* < 1.

C.2 Example: Non-identifiability of Ω𝑊

Overview In the context of Section 5.3.1, we give a concrete example to demonstrate

the non-identifiability of Ω𝑊 , defined in (5.12). We focus on the simple case when 𝑊 is

one dimensional, and the matrix Ω𝑊 reduces to a single number 𝜌𝑊 := 𝛽2
𝑊/(𝛽2

𝑊 +𝜎2
𝑊 ),

indicating the signal-to-variance ratio of 𝑊 . We give an example of an observed

distribution for which 𝜌𝑊 is not identified, and moreover, the optimal predictor with

respect to the robustness set 𝐶𝐴(𝜆) is not identified (see Figure C-2).

Setup If (𝑋,𝑌,𝑊 ) ∈ R3 is distributed multivariate normal with zero mean, then

their covariance matrix fully determines the observed distribution. Let that covariance

matrix be denoted by Σ(𝑋,𝑌,𝑊 ) ∈ R3×3, which gives us six observed moments of the

distribution

Σ(𝑋,𝑌,𝑊 ) :=

⎛⎜⎜⎜⎝
E[𝑋2] · ·

E[𝑋𝑌 ] E[𝑌 2] ·

E[𝑊𝑋] E[𝑊𝑌 ] E[𝑊 2]

⎞⎟⎟⎟⎠ ,
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Figure C-2: (a) SCM parameters that all give rise to the same observational distribu-
tion, and observe that (b) the parameter 𝛾𝐴𝑅(𝐴) (as if 𝐴 were observed) can diverge
substantially from the solution 𝛾𝑃𝐴𝑅(𝑊 ), when a single proxy is available. 𝜆 = 5 for
this example.

where we only show the lower triangular portion, since the matrix is symmetric. Sup-

pose that we knew that this observed distribution was generated by the following SCM,

but that we do not know the values for the parameters (𝛽𝑊 , 𝛽𝑋 , 𝛽𝑌 , 𝛼, 𝜎
2
𝑊 , 𝜎2

𝑋 , 𝜎
2
𝑌 )

𝐴 := 𝜖𝐴 𝜖𝐴 ∼ 𝒩 (0, 1)

𝑊 := 𝛽𝑊𝐴+ 𝜖𝑊 𝜖𝑊 ∼ 𝒩 (0, 𝜎2
𝑊 )

𝑋 := 𝛽𝑋𝐴+ 𝜖𝑋 𝜖𝑋 ∼ 𝒩 (0, 𝜎2
𝑋)

𝑌 := 𝛼𝑋 + 𝛽𝑌𝐴+ 𝜖𝑌 𝜖𝑌 ∼ 𝒩 (0, 𝜎2
𝑌 ),

where 𝜖𝐴, 𝜖𝑊 , 𝜖𝑋 , 𝜖𝑌 are jointly independent. We can attempt to identify the parameters

using the following relationships implied by the SCM, and matching these to the

moments that we observe

E[𝑊𝑋] = 𝛽𝑊𝛽𝑋

E[𝑋𝑌 ] = 𝛽𝑌 𝛽𝑋 + 𝛼E[𝑋2]

E[𝑊𝑌 ] = 𝛽𝑊 (𝛽𝑌 + 𝛼𝛽𝑋)

E[𝑊 2] = 𝛽2
𝑊 + 𝜎2

𝑊

390



E[𝑋2] = 𝛽2
𝑋 + 𝜎2

𝑋

E[𝑌 2] = 𝛼2E[𝑋2] + 2𝛼𝛽𝑌 𝛽𝑋 + 𝛽2
𝑌 + 𝜎2

𝑌

However, as we will see, this does not identify the parameters. In particular, there is

a set of parameterizations which all give rise to the same observed distribution, and

which imply different values of the signal-to-variance ratio 𝜌𝑊 := 𝛽2
𝑊/(𝛽2

𝑊 + 𝜎2
𝑊 ).

A class of observationally equivalent SCMs Let 𝜃 := (𝛽𝑊 , 𝛽𝑋 , 𝛽𝑌 , 𝛼, 𝜎
2
𝑊 , 𝜎2

𝑋 , 𝜎
2
𝑌 ) ∈

R7 be the parameters of the SCM, and let Σ = 𝑓(𝜃) be the covariance matrix over

(𝑋, 𝑌,𝑊 ) implied by these parameters.

For any covariance matrix Σ, there exists a subset 𝐶 ⊂ [0, 1] such that for any 𝜌𝑊 ∈ 𝐶,

we can write the parameters as a function of 𝜌𝑊 , such that 𝑓(𝜃(𝜌𝑊 )) = Σ. The

set 𝐶 is constrained by the observed moments: In particular, as we show below,

𝜌𝑊 ≥ corr(𝑊,𝑋)2 due to the constraint that 𝜎2
𝑋 ≥ 0, and the condition that 𝜎2

𝑌 ≥ 0

also imposes a lower bound. In particular, for the covariance matrix below, we

demonstrate numerically that [0.06, 1] ⊂ 𝐶.

Σ(𝑋,𝑌,𝑊 ) :=

⎛⎜⎜⎜⎝
9 3 1

3 9 2

1 2 9

⎞⎟⎟⎟⎠ .

We now give a strategy for constructing 𝜃(𝜌𝑊 ), given a desired 𝜌𝑊 (including checking

the constraint that this 𝜌𝑊 ∈ 𝐶). Suppose that 𝑊 and 𝑋 are positively correlated, as

in this example. Fixing some 𝜌𝑊 ∈ [0, 1], we start by writing 𝛽𝑊 , 𝜎𝑊 as functions of

𝜌𝑊 , where

𝛽𝑊 :=
√︀

E[𝑊 2]𝜌𝑊

𝜎2
𝑊 := E[𝑊 2](1− 𝜌𝑊 ).

The first constraint, that 𝜎2
𝑋 ≥ 0, can be captured as follows. Let 𝜌𝑋 := 𝛽2

𝑋/E[𝑋2].
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Observe that
√
𝜌𝑋𝜌𝑊 = corr(𝑊,𝑋). This implies a lower bound on 𝜌𝑊 , given by

𝜌𝑊 ≥ corr(𝑊,𝑋)2, since 𝜌𝑋 ≤ 1 due to 𝜎2
𝑋 ≥ 0. This also implies that 𝜌𝑋 is

determined uniquely by 𝜌𝑊 , and is given by 𝜌𝑋 = corr(𝑊,𝑋)2/𝜌𝑊 . From this we can

write

𝛽𝑋 :=
√︀

E[𝑋2]𝜌𝑋

𝜎2
𝑋 := E[𝑋2](1− 𝜌𝑋).

These choices for (𝛽𝑊 , 𝜎2
𝑊 , 𝛽𝑋 , 𝜎

2
𝑋) match the observed moments E[𝑋2],E[𝑊 2],E[𝑊𝑋].

Then the rest of the parameters can be found as follows, where 𝛽𝑊 , 𝛽𝑋 are fixed as

above

𝛽𝑌 :=
1

𝛽𝑊 (1− 𝜌𝑋)

(︂
E[𝑊𝑌 ]− E[𝑋𝑌 ]E[𝑊𝑋]

E[𝑋2]

)︂
𝛼 :=

E[𝑋𝑌 ]− 𝛽𝑌 𝛽𝑋

E[𝑋2]

𝜎2
𝑌 := E[𝑌 2]− 𝛽2

𝑌 − 2𝛼𝛽𝑌 𝛽𝑋 − 𝛼2E[𝑋2]

where all of these are functions of 𝜌𝑊 , in that 𝛽𝑊 , 𝛽𝑋 are functions of 𝜌𝑊 . It remains

to verify that for a given choice of 𝜌𝑊 , we satisfy the constraint that 𝜎2
𝑌 ≥ 0. For

simplicity, we check this constraint computationally in the context of Example 1, for a

range of values of 𝜌𝑊 , and we give the set of observationally-equivalent parameters in

Figure C-2a, where valid values of 𝜌𝑊 range over [0.06, 1].

Next we show that the Proxy Anchor Regression estimator, 𝛾𝑃𝐴𝑅(𝑊 ), differs from the

Anchor Regression estimator, 𝛾𝐴𝑅(𝐴), and more so when 𝜌𝑊 becomes small. This is

shown in Figure C-2b, for 𝜆 = 5, and we give the relevant computations here.

Solution to PAR(𝑊 ) If we have a single proxy, then we can write down the opti-

mization problem Equation (5.10) as

min
𝛾

E[(𝑌 − 𝛾𝑋)2] + 𝜆E[(𝑌 − 𝛾𝑋)𝑊 ]2E[𝑊 2]
−1
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=min
𝛾

E[𝑌 2]− 2𝛾E[𝑌 𝑋] + 𝛾2𝐸[𝑋2]

+ 𝜆(E[𝑌𝑊 ]− 𝛾E[𝑋𝑊 ])2E[𝑊 2]
−1
,

from which we obtain the optimal solution

𝛾𝑃𝐴𝑅(𝑊 ) =
E[𝑌 𝑋]E[𝑊 2] + 𝜆E[𝑌𝑊 ]

E[𝑋2]E[𝑊 2] + 𝜆E[𝑋𝑊 ]
.

Solution to AR(𝐴) First, we can write the residual as

𝑌 − 𝑌 = 𝑌 − 𝛾𝑋

= 𝛼𝑋 + 𝛽𝑌𝐴+ 𝜖𝑌 − 𝛾𝛽𝑋𝐴− 𝛾𝜖𝑋

= 𝛼(𝛽𝑋𝐴+ 𝜖𝑋) + 𝛽𝑌𝐴+ 𝜖𝑌 − 𝛾𝛽𝑋𝐴− 𝛾𝜖𝑋

= 𝐴((𝛼− 𝛾)𝛽𝑋 + 𝛽𝑌 ) + (𝛼− 𝛾)𝜖𝑋 + 𝜖𝑌 ,

such that the expected squared error is given by

E𝑑𝑜(𝐴:=𝜈)(𝑌 − 𝑌 )
2

= ((𝛼− 𝛾)𝛽𝑋 + 𝛽𝑌 )
2E[𝜈2] + (𝛼− 𝛾)2𝜎2

𝑋 + 𝜎2
𝑌 , (C.4)

and when 𝜈 ∈ {𝜈 : E[𝜈2] ≤ (1 + 𝜆)}, taking the supremum involves replacing E[𝜈2]

with (1 + 𝜆). Optimizing Equation (C.4) with respect to 𝛾, we obtain

𝜕

𝜕𝛾

[︀
((𝛼− 𝛾)𝛽𝑋 + 𝛽𝑌 )

2(1 + 𝜆) + (𝛼− 𝛾)2𝜎2
𝑋 + 𝜎2

𝑌

]︀
= −2𝛽𝑋(𝛼𝛽𝑋 − 𝛾𝛽𝑋 + 𝛽𝑌 )(1 + 𝜆)− 2(𝛼− 𝛾)𝜎2

𝑋 ,

which implies that

0 = 𝛽𝑋(𝛼𝛽𝑋 − 𝛾𝛽𝑋 + 𝛽𝑌 )(1 + 𝜆) + (𝛼− 𝛾)𝜎2
𝑋

= (𝛼𝛽2
𝑋 + 𝛽𝑋𝛽𝑌 )(1 + 𝜆)− 𝛾𝛽2

𝑋(1 + 𝜆) + 𝛼𝜎2
𝑋 − 𝛾𝜎2

𝑋 ,
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so that the optimal choice of 𝛾 is given by

𝛾𝐴𝑅(𝐴) =
(𝛼𝛽2

𝑋 + 𝛽𝑋𝛽𝑌 )(1 + 𝜆) + 𝛼𝜎2
𝑋

𝛽2
𝑋(1 + 𝜆) + 𝜎2

𝑋

.

If 𝜆 = −1, this recovers the causal effect of 𝑋 on 𝑌 , and if 𝜆→∞, this recovers a

set of coefficients that are invariant to variation in 𝐴, as can be seen by plugging the

resulting coefficient 𝛾 = 𝛼 + 𝛽𝑌 /𝛽𝑋 into Equation (C.4).

C.3 Proofs

C.3.1 Auxiliary results

First, we show that the proof of Theorem 1 of Rothenhäusler et al. (2021) can be

decomposed into two parts, and use this observation to simplify the proof of our

Theorem 5.1. Proposition A1 establishes that ℓ𝑃𝐿𝑆 can be written as a quadratic form

in the structural parameters 𝑤⊤
𝛾 𝑀𝐴. Proposition A2 is a straightforward generalization

of the techniques used in Rothenhäusler et al. (2021), and establishes that any

regularization term that can be written in this way naturally implies a robustness

guarantee.

By Assumption 5.1, our SCM can be written in the following form, where 𝜖 ⊥⊥ 𝐴, and

all variables are mean-zero and have bounded covariance.⎛⎜⎜⎜⎝
𝑋

𝑌

𝐻

⎞⎟⎟⎟⎠ = (𝐼𝑑−𝐵)−1(𝑀𝐴𝐴+ 𝜖). (C.5)

In this context, we use the following notational shorthand,

𝑤𝛾 :=
(︁
(𝐼𝑑−𝐵)−1

𝑑𝑋+1,· − 𝛾⊤(𝐼𝑑−𝐵)−1
1:𝑑𝑋 ,·

)︁⊤
, (C.6)

such that we can write the residual as a function of both the exogenous noise 𝜖 and 𝐴
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as

𝑅(𝛾) := 𝑌 − 𝛾⊤𝑋 = 𝑤⊤
𝛾 (𝜖+𝑀𝐴𝐴), (C.7)

under the training distribution. (This identity explains the valley in the loss landscape

displayed in Figure 5-3: If 𝑑𝐴 ≥ 2, for any parameter 𝛾, there exist an orthogonal

intervention direction 𝜈 ∈ (𝑤⊤
𝛾 𝑀𝐴)

⊥, to which the loss is invariant.)

Proposition A1. Under Assumption 5.1,

ℓ𝑃𝐿𝑆(𝑋, 𝑌,𝐴; 𝛾)

= 𝑤⊤
𝛾 𝑀𝐴E[𝐴𝐴⊤]𝑀⊤

𝐴𝑤𝛾, (C.8)

and

ℓ𝑃𝐿𝑆(𝑋, 𝑌,𝑊 ; 𝛾)

= 𝑤⊤
𝛾 𝑀𝐴E[𝐴𝑊⊤]E[𝑊𝑊⊤]

−1E[𝑊𝐴⊤]𝑀⊤
𝐴𝑤𝛾, (C.9)

where 𝑤𝛾 is defined by Equation (C.6).

Proof. The first statement follows from Equation (5.6) and the observation that

E[𝑅(𝛾)𝐴⊤] = E[𝑤⊤
𝛾 (𝜖+𝑀𝐴𝐴)𝐴

⊤]

= 𝑤⊤
𝛾 E[𝜖𝐴⊤] + 𝑤⊤

𝛾 𝑀𝐴E[𝐴𝐴⊤]

= 𝑤⊤
𝛾 𝑀𝐴E[𝐴𝐴⊤],

where we used 𝜖 ⊥⊥ 𝐴. Similarly

ℓ𝑃𝐿𝑆(𝑋, 𝑌,𝑊 ; 𝛾)

= E[𝑅(𝛾)𝑊⊤]E[𝑊𝑊⊤]
−1E[𝑊𝑅(𝛾)⊤]

= E[𝑤⊤
𝛾 (𝜖+𝑀𝐴)𝑊⊤]E[𝑊𝑊⊤]

−1E[𝑊𝑅(𝛾)⊤]

= 𝑤⊤
𝛾 𝑀𝐴E[𝐴𝑊⊤]E[𝑊𝑊⊤]

−1E[𝑊𝐴⊤]𝑀⊤
𝐴𝑤𝛾,
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where the first equality follows from Equation (5.6), and the final equality follows

from the fact that 𝜖 ⊥⊥ 𝑊 .

Proposition A2. Under Assumption 5.1, for any 𝜆 and any real, symmetric Ω such

that 0 ⪯ E[𝐴𝐴⊤] + 𝜆Ω, any loss function of the form

ℓ(𝛾, 𝜆) := ℓ𝐿𝑆(𝑋, 𝑌 ; 𝛾) + 𝜆𝑤⊤
𝛾 𝑀𝐴Ω𝑀

⊤
𝐴𝑤𝛾, (C.10)

where 𝑤𝛾 is defined by Equation (C.6), is equal to the following worst-case loss under

bounded perturbations

ℓ(𝛾, 𝜆) = sup
𝜈∈𝐶(𝜆)

E𝑑𝑜(𝐴:=𝜈)[(𝑌 − 𝛾⊤𝑋)
2
],

where

𝐶(𝜆) := {𝜈 : E[𝜈𝜈⊤] ⪯ E[𝐴𝐴⊤] + 𝜆Ω}.

Proof. We have, making use of the fact that 𝜖 ⊥⊥ 𝐴, and E[𝜖] = 0

sup
𝜈∈𝐶(𝜆)

E𝑑𝑜(𝐴:=𝜈)

[︁
(𝑌 − 𝛾⊤𝑋)

2
]︁

= sup
𝜈∈𝐶(𝜆)

E𝑑𝑜(𝐴:=𝜈)

[︁
(𝑤⊤

𝛾 (𝜖+𝑀𝐴𝜈))
2
]︁

= E
[︁
(𝑤⊤

𝛾 𝜖)
2
]︁
+ sup

𝜈∈𝐶(𝜆)

E[(𝑤⊤
𝛾 𝑀𝐴𝜈)

2
]

= E
[︁
(𝑤⊤

𝛾 𝜖)
2
]︁
+ sup

𝜈∈𝐶(𝜆)

𝑤⊤
𝛾 𝑀𝐴E[𝜈𝜈⊤]𝑀𝐴

⊤𝑤𝛾

= E
[︁
(𝑤⊤

𝛾 𝜖)
2
]︁
+ 𝑤⊤

𝛾 𝑀𝐴(E[𝐴𝐴⊤] + 𝜆Ω)𝑀𝐴
⊤𝑤𝛾

= E
[︁
(𝑤⊤

𝛾 𝜖)
2
]︁
+ 𝑤⊤

𝛾 𝑀𝐴E[𝐴𝐴⊤]𝑀𝐴
⊤𝑤𝛾

+ 𝜆𝑤⊤
𝛾 𝑀𝐴Ω𝑀𝐴

⊤𝑤𝛾

= E
[︁
(𝑤⊤

𝛾 (𝜖+𝑀𝐴𝐴))
2
]︁
+ 𝜆𝑤⊤

𝛾 𝑀𝐴Ω𝑀𝐴
⊤𝑤𝛾

= ℓ𝐿𝑆(𝑋, 𝑌 ; 𝛾) + 𝜆𝑤⊤
𝛾 𝑀𝐴Ω𝑀𝐴

⊤𝑤𝛾

= ℓ(𝛾, 𝜆),
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where in the fifth line we used the definition of 𝐶(𝜆). The supremum is achievable even

if 𝜈 is a deterministic vector, since we can take 𝜈 := 𝑆𝑏√
𝑏⊤𝑆𝑏

where 𝑆 := E[𝐴𝐴⊤] + 𝜆Ω

and 𝑏 := 𝑀𝐴
⊤𝑤𝛾. Then the supremum value is achieved by 𝜈, as 𝜈𝜈⊤ = 𝑆𝑏𝑏⊤𝑆

𝑏⊤𝑆𝑏
and

𝑏⊤𝜈𝜈⊤𝑏 = 𝑏⊤𝑆𝑏𝑏⊤𝑆𝑏
𝑏⊤𝑆𝑏

= 𝑏⊤𝑆𝑏. To show that 𝜈𝜈⊤ ⪯ 𝑆, such that 𝜈 ∈ 𝐶(𝜆), we can take

any conformable vector 𝑥 to see that

𝑥⊤(𝑆 − 𝜈𝜈⊤)𝑥 = 𝑥⊤𝑆𝑥− 𝑥⊤𝑆𝑏𝑏⊤𝑆𝑥

𝑏⊤𝑆𝑏

= ⟨𝑥, 𝑥⟩ − ⟨𝑥, 𝑏⟩
2

⟨𝑏, 𝑏⟩

≥ 0,

where we use the fact that ⟨𝑒, 𝑓⟩ := 𝑒⊤𝑆𝑓 defines an inner product, and we apply

Cauchy-Schwarz: ⟨𝑥, 𝑥⟩⟨𝑏, 𝑏⟩ ≥ ⟨𝑥, 𝑏⟩2.

In the proofs for Section 5.3, we will occasionally make use of the following fact, which

we prove here to simplify exposition later on.

Proposition A3. In the setting of a single proxy (i.e., under Assumptions 5.1 and 5.2)

let Ω𝑊 be defined as follows

Ω𝑊 := E[𝐴𝑊⊤]E[𝑊𝑊⊤]
−1E[𝑊𝐴⊤]. (C.11)

Then Ω𝑊 ⪯ E[𝐴𝐴⊤]. Furthermore, if E[𝜖𝑊 𝜖⊤𝑊 ] is positive definite, then this inequality

is strict, that is, Ω𝑊 ≺ E[𝐴𝐴⊤].

Proof. Recall that E[𝐴𝐴⊤] and E[𝑊𝑊⊤] are invertible (and hence positive definite)

by assumption.

The inequality Ω𝑊 ⪯ E[𝐴𝐴⊤] is equivalent to showing that

𝑆 := E[𝐴𝐴⊤]− E[𝐴𝑊⊤]E[𝑊𝑊⊤]
−1E[𝑊𝐴⊤] ⪰ 0. (C.12)
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Observe that 𝑆 is the Schur complement of the matrix 𝐾 := E

⎡⎢⎣
⎛⎝𝐴

𝑊

⎞⎠⎛⎝𝐴

𝑊

⎞⎠⊤
⎤⎥⎦. The

matrix 𝐾 is positive semi-definite (PSD) if and only if E[𝐴𝐴⊤] is positive definite

(true by assumption) and 𝑆 is PSD (see Zhang (2006, Theorem 1.12b)). Since 𝐾 is

PSD by construction, as the covariance matrix of 𝐴,𝑊 , this implies that 𝑆 ⪰ 0.

Similarly, 𝐾 is positive definite (PD) if and only if E[𝐴𝐴⊤] and 𝑆 are both PD (see

Zhang (2006, Theorem 1.12a)). Under the condition that E[𝜖𝑊 𝜖⊤𝑊 ] is full-rank, then

𝐾 is PD, and the second inequality follows.

C.3.2 Proof of additional results

Proof of Equation (5.9). It follows from Proposition A1 that

ℓ𝑃𝐿𝑆(𝑋, 𝑌,𝐴; 𝛾) = 𝑤⊤
𝛾 𝑀𝐴Ω𝐴𝑀

⊤
𝐴𝑤𝛾

ℓ𝑃𝐿𝑆(𝑋, 𝑌,𝑊 ; 𝛾) = 𝑤⊤
𝛾 𝑀𝐴Ω𝑊𝑀⊤

𝐴𝑤𝛾,

where Ω𝑊 := E[𝐴𝑊⊤]E[𝑊𝑊⊤]
−1E[𝑊𝐴⊤] and Ω𝐴 := E[𝐴𝐴⊤] are both full rank

because E[𝐴𝑊⊤] = E[𝐴𝐴⊤]𝛽𝑊 and by assumptions that E[𝑊𝑊⊤],E[𝐴𝐴⊤] and 𝛽𝑊

are full rank. Hence both ℓ𝑃𝐿𝑆(𝑋, 𝑌,𝐴; 𝛾) and ℓ𝑃𝐿𝑆(𝑋, 𝑌,𝑊 ; 𝛾) are zero exactly when

𝑤⊤
𝛾 𝑀𝐴 = 0.

C.3.3 Proof of main results

Section 5.3

Proof of Theorem 5.1. We use the fact that 𝜖 is mean-zero and independent of both

𝐴 and 𝑊 . Recall that

ℓ𝑃𝐴𝑅(𝑊 ; 𝛾, 𝜆) = ℓ𝐿𝑆(𝛾) + 𝜆ℓ𝑃𝐿𝑆(𝑊 ; 𝛾),
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where we suppress the dependence on 𝑋, 𝑌 in the notation. Letting 𝑤𝛾 be as defined

in Equation (C.6), it follows from Equation (C.9) that

ℓ𝑃𝐿𝑆(𝑋, 𝑌,𝑊 ; 𝛾)

= 𝑤⊤
𝛾 𝑀𝐴 E[𝐴𝑊⊤]E[𝑊𝑊⊤]

−1E[𝑊𝐴⊤]⏟  ⏞  
Ω𝑊

𝑀⊤
𝐴𝑤𝛾.

The statement then follows from the application of Proposition A2, and the fact that

Ω𝑊 ⪯ E[𝐴𝐴⊤] (by Proposition A3), such that E[𝐴𝐴⊤] + 𝜆Ω𝑊 ⪰ 0 for all 𝜆 ≥ −1.

Proof of Proposition 5.1. Recall that the guarantee regions are given by

𝐶𝐴(𝜆) = {𝜈 : E[𝜈𝜈⊤] ⪯ E[𝐴𝐴⊤] + 𝜆E[𝐴𝐴⊤]}

𝐶𝑊 (𝜆) = {𝜈 : E[𝜈𝜈⊤] ⪯ E[𝐴𝐴⊤] + 𝜆Ω𝑊}

𝐶𝑂𝐿𝑆 = {𝜈 : E[𝜈𝜈⊤] ⪯ E[𝐴𝐴⊤]},

where

Ω𝑊 = E[𝐴𝑊⊤]E[𝑊𝑊⊤]
−1E[𝑊𝐴⊤].

The fact that E[𝑊𝑊⊤]
−1 ≻ 0 implies Ω𝑊 ⪰ 0, and this implies that 𝐶𝑂𝐿𝑆 ⊆ 𝐶𝑊 (𝜆)

for 𝜆 ≥ 0. Showing 𝐶𝑊 (𝜆) ⊂ 𝐶𝐴(𝜆) amounts to showing that Ω𝑊 ≺ E[𝐴𝐴⊤], which

holds by Proposition A3 when E[𝜖𝑊 𝜖⊤𝑊 ] ≻ 0.

Next, we prove that 𝐶𝑊 is monotonically decreasing in the noise E[𝜖𝑊 𝜖⊤𝑊 ], in the sense

that if E[𝜖𝑊 𝜖⊤𝑊 ] ⪯ E[𝜂𝑊𝜂⊤𝑊 ] then

E𝜂[𝐴𝑊
⊤]E𝜂[𝑊𝑊⊤]

−1E𝜂[𝑊𝐴⊤]

⪯ E𝜖[𝐴𝑊
⊤]E𝜖[𝑊𝑊⊤]

−1E𝜖[𝑊𝐴⊤],

where E𝜂 is the expectation in the SCM where 𝑊 := 𝛽⊤
𝑊𝐴+ 𝜂𝑊 (and similar for E𝜖).

Suppose that E[𝜖𝑊 𝜖⊤𝑊 ] ⪯ E[𝜂𝑊𝜂⊤𝑊 ]. Then E𝜂[𝑊𝑊⊤]
−1 ⪯ E𝜖[𝑊𝑊⊤]

−1
, and since
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E𝜂[𝐴𝑊
⊤] = E𝜖[𝐴𝑊

⊤], for any vector 𝑥 ∈ R𝑑𝐴 it holds that,

(E𝜂[𝑊𝐴⊤]𝑥)
⊤E𝜂[𝑊𝑊⊤]

−1
(E𝜂[𝑊𝐴⊤]𝑥)

≤ (E𝜖[𝑊𝐴⊤]𝑥)
⊤E𝜖[𝑊𝑊⊤]

−1
(E𝜖[𝑊𝐴⊤]𝑥).

This establishes the matrix inequality.

To conclude the proof, suppose that E[𝜖𝑊 𝜖⊤𝑊 ] = 0, 𝑑𝐴 = 𝑑𝑊 and that 𝛽𝑊 has full rank.

It then follows that

Ω𝑊 = E[𝐴𝑊⊤]E[𝑊𝑊⊤]
−1E[𝑊𝐴⊤]

= E[𝐴𝐴⊤]𝛽𝑊 (𝛽⊤
𝑊E[𝐴𝐴⊤]𝛽𝑊 )

−1
𝛽⊤
𝑊E[𝐴𝐴⊤]

= E[𝐴𝐴⊤]𝛽𝑊𝛽−1
𝑊 E[𝐴𝐴⊤]

−1
𝛽⊤
𝑊

−1
𝛽⊤
𝑊E[𝐴𝐴⊤]

= E[𝐴𝐴⊤],

such that 𝐶𝑊 (𝜆) = E[𝐴𝐴⊤] + 𝜆Ω𝑊 = (1 + 𝜆)E[𝐴𝐴⊤] = 𝐶𝐴(𝜆).

Proof of Theorem 5.2. Let 𝑤𝛾 be defined as in Equation (C.6). We can write the

population quantity as follows, making use of the fact that 𝜖, 𝜖𝑍 , and 𝜖𝑊 are jointly

independent, and that all errors have zero mean.

ℓ×(𝑊,𝑍; 𝛾)

= E[(𝑌 − 𝛾⊤𝑋)𝑊⊤]E[𝑍𝑊⊤]
−1E[𝑍(𝑌 − 𝛾⊤𝑋)

⊤
]

= E[𝑤⊤
𝛾 (𝑀𝐴𝐴+ 𝜖)𝑊⊤]E[𝑍𝑊⊤]

−1

· E[𝑍(𝐴⊤𝑀⊤
𝐴 + 𝜖⊤)𝑤𝛾]

= 𝑤⊤
𝛾 𝑀𝐴E[𝐴𝑊⊤]E[𝑍𝑊⊤]

−1E[𝑍𝐴⊤]𝑀⊤
𝐴𝑤𝛾

= 𝑤⊤
𝛾 𝑀𝐴E[𝐴(𝐴⊤𝛽𝑊 + 𝜖⊤𝑊 )]

E[(𝛽⊤
𝑍𝐴+ 𝜖𝑍)(𝐴

⊤𝛽𝑊 + 𝜖⊤𝑊 )]
−1

E[(𝛽⊤
𝑍𝐴+ 𝜖𝑍)𝐴

⊤]𝑀⊤
𝐴𝑤𝛾

= 𝑤⊤
𝛾 𝑀𝐴E[𝐴𝐴⊤]𝛽𝑊

(︀
𝛽⊤
𝑍E[𝐴𝐴⊤]𝛽𝑊

)︀−1
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𝛽⊤
𝑍E[𝐴𝐴⊤]𝑀⊤

𝐴𝑤𝛾

= 𝑤⊤
𝛾 𝑀𝐴E[𝐴𝐴⊤]𝛽𝑊𝛽−1

𝑊 E[𝐴𝐴⊤]
−1
(𝛽⊤

𝑍 )
−1

𝛽⊤
𝑍E[𝐴𝐴⊤]𝑀⊤

𝐴𝑤𝛾

= 𝑤⊤
𝛾 𝑀𝐴E[𝐴𝐴⊤]E[𝐴𝐴⊤]

−1E[𝐴𝐴⊤]𝑀⊤
𝐴𝑤𝛾

= 𝑤⊤
𝛾 𝑀𝐴E[𝐴𝐴⊤]𝑀⊤

𝐴𝑤𝛾

The result follows from Proposition A1.

In the main text, we state that the xPAR(𝑊,𝑍) objective is convex in 𝛾 and has a

closed form solution. We give the proof here:

Proposition A4. Under Assumptions 5.1, 5.3 and 5.4, the loss in Equation (5.14) is

convex in 𝛾, and its minimizer is given by

𝛾*
×𝑃𝐴𝑅 :=

(︀
2E[𝑋𝑋⊤] + 𝜆(𝐿+ 𝐿⊤)

)︀−1(︀
2E[𝑋𝑌 ⊤] + 𝜆(𝐾1 +𝐾2)

)︀
,

where we define

𝐿 := E[𝑋𝑊⊤]E[𝑍𝑊⊤]−1E[𝑍𝑋⊤],

𝐾1 := E[𝑋𝑊⊤]E[𝑍𝑊⊤]−1E[𝑍𝑌 ⊤]

𝐾2 := E[𝑋𝑍⊤]E[𝑊𝑍⊤]−1E[𝑊𝑌 ⊤].

Proof. By Theorem 5.2 and Equation (5.7), ℓ×𝑃𝐴𝑅(𝑊,𝑍; 𝛾, 𝜆) = ℓ𝐴𝑅(𝑋, 𝑌,𝐴; 𝛾, 𝜆), and

the latter is convex in 𝛾, since it is the sum ℓ𝐿𝑆, which is convex, and 𝜆ℓ𝑃𝐿𝑆(𝑋, 𝑌,𝐴; 𝛾),

which is a quadratic form by Proposition A1 and hence convex.

Consequently optimal solution can be found by taking the gradient of ℓ×𝑃𝐴𝑅(𝑊,𝑍; 𝛾, 𝜆) =

ℓ𝐿𝑆 + 𝜆ℓ× with respect to 𝛾 and equating it to 0. Letting 𝐷 := E[𝑍𝑊⊤]−1, we can

differentiate ℓ×𝑃𝐴𝑅 term wise, using Equation (5.13) to rewrite ℓ×:

0 = 2𝛾⊤E[𝑋𝑋⊤]− 2E[𝑌 𝑋⊤]
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− 𝜆E[𝑌𝑊⊤]𝐷E[𝑍𝑋⊤]

− 𝜆E[𝑌 𝑍⊤]𝐷⊤E[𝑊𝑋⊤]

+ 𝜆𝛾⊤(𝐿+ 𝐿⊤),

where 𝐿 := E[𝑋𝑊⊤]E[𝑍𝑊⊤]−1E[𝑍𝑋⊤]. Defining 𝐾1 := E[𝑋𝑊⊤]𝐷E[𝑍𝑌 ⊤] and

𝐾2 := E[𝑋𝑍⊤]𝐷⊤E[𝑊𝑌 ⊤], and rearranging, we obtain:

𝛾⊤(2E[𝑋𝑋⊤] + 𝜆(𝐿+ 𝐿⊤))

= 2E[𝑌 𝑋⊤] + 𝜆(𝐾⊤
1 +𝐾⊤

2 ),

so by transposing and solving for 𝛾, we get the expression from the statement.

Section 5.4

Proof of Proposition 5.2. Let 𝑤𝛾 be defined by (C.6) and for any 𝛾 let 𝑏⊤𝛾 := 𝑤⊤
𝛾 𝑀𝐴.

We can write the loss as follows

E𝑑𝑜(𝐴:=𝜈)[(𝑌 − 𝛾⊤𝑋 − 𝛼)
2
]

= E[(𝑤⊤
𝛾 (𝜖+𝑀𝐴𝜈)− 𝛼)

2
]

= E[(𝑤⊤
𝛾 𝜖+ 𝑤⊤

𝛾 𝑀𝐴𝜈 − 𝛼)
2
]

𝜖⊥⊥𝜈
= E[(𝑤⊤

𝛾 𝜖)
2
] + E[(𝑤⊤

𝛾 𝑀𝐴𝜈 − 𝛼)
2
]

= E[(𝑤⊤
𝛾 𝜖)

2
] + E[(𝑤⊤

𝛾 𝑀𝐴𝐴)
2
]

− E[(𝑤⊤
𝛾 𝑀𝐴𝐴)

2
] + E[(𝑤⊤

𝛾 𝑀𝐴𝜈 − 𝛼)
2
]

= ℓ𝐿𝑆(𝛾)− E[(𝑏⊤𝛾 𝐴)
2
] + E[(𝑏⊤𝛾 𝜈 − 𝛼)

2
]

= ℓ𝐿𝑆(𝛾)− 𝑏⊤𝛾 E[𝐴𝐴⊤]𝑏⊤𝛾

+ 𝑏⊤𝛾 E[𝜈𝜈⊤]𝑏𝛾 − 2E[𝑏⊤𝛾 𝜈]𝛼 + 𝛼2

= ℓ𝐿𝑆(𝛾) + 𝑏⊤𝛾
(︀
E[𝜈𝜈⊤]− E[𝐴𝐴⊤]

)︀
𝑏𝛾

− 2E[𝑏⊤𝛾 𝜈]𝛼 + 𝛼2

= ℓ𝐿𝑆(𝛾)
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+ 𝑏⊤𝛾
(︀
E[𝜈𝜈⊤]− E[𝐴𝐴⊤]

)︀
𝑏𝛾 − (𝑏⊤𝛾 E[𝜈])

2

+ (𝑏⊤𝛾 E[𝜈])
2 − 2E[𝑏⊤𝛾 𝜈]𝛼 + 𝛼2

= ℓ𝐿𝑆(𝛾) + 𝑏⊤𝛾 (Σ𝜈 − Σ𝐴) 𝑏𝛾 +
(︀
𝑏⊤𝛾 E[𝜈]− 𝛼

)︀2
,

where for any value of 𝛾, that minimizing with respect to 𝛼 yields 𝛼* = 𝑏⊤𝛾 E[𝜈], where

𝑏⊤𝛾 = 𝑤⊤
𝛾 𝑀𝐴. Given that we can write the structural relationship 𝑌 −𝛾⊤𝑋 = 𝑏⊤𝛾 𝐴+𝑤⊤

𝛾 𝜖,

and knowing that E[𝜖] = 0 and that 𝜖 ⊥⊥ 𝐴, we know that 𝑏⊤𝛾 𝐴 is the conditional

expectation of 𝑅(𝛾) given 𝐴.

In the main text, we note that Equation (5.16) (the objective function ℓ𝑇𝐴𝑅) is convex

in 𝛾, 𝛼, and has a closed form solution. We prove that result here.

Proposition A5. Under Assumption 5.1, the minimizer 𝛾*
𝑇𝐴𝑅, 𝛼

*
𝑇𝐴𝑅 of Equation (5.16)

is given by

𝛾* =
(︀
E[𝑋𝑋⊤] + E[𝑋𝐴⊤]ΩE[𝐴𝑋⊤]

)︀−1(︀
E[𝑋𝑌 ⊤] + E[𝑋𝐴⊤]ΩE[𝐴𝑌 ⊤]

)︀
𝛼* = 𝑏⊤𝛾*𝜇𝜈 ,

where Ω = E[𝐴𝐴⊤]
−1
(Σ𝜈 − Σ𝐴)E[𝐴𝐴⊤]

−1
, and 𝑏⊤𝛾 is defined in Equation (5.15).

Proof of Proposition A5. Let 𝑤𝛾 be as defined in Equation (C.6) and let 𝑏⊤𝛾 := 𝑤⊤
𝛾 𝑀𝐴.

Since E[(𝑌 −𝛾⊤𝑋) | 𝐴] = E[𝑤⊤
𝛾 [𝑀𝐴𝐴+ 𝜖] | 𝐴] = 𝑏⊤𝛾 𝐴, for any 𝛾, 𝑏⊤𝛾 is the linear regres-

sion coefficient of (𝑌 −𝛾⊤𝑋) onto 𝐴, so we may write 𝑏⊤𝛾 = E[(𝑌 −𝛾⊤𝑋)𝐴⊤]E[𝐴𝐴⊤]−1.

Plugging in the optimal value 𝛼(𝛾) := 𝑏⊤𝛾 𝜇𝜈 , we obtain

ℓ𝑇𝐴𝑅(𝐴;𝜇𝜈 ,Σ𝜈 , 𝛾, 𝛼(𝛾))

= ℓ𝐿𝑆(𝛾) + 𝑏⊤𝛾 (Σ𝜈 − Σ𝐴) 𝑏𝛾

= ℓ𝐿𝑆(𝛾) + E[(𝑌 − 𝛾⊤𝑋)𝐴⊤]ΩE[𝐴(𝑌 − 𝛾⊤𝑋)
⊤
]
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This objective is convex in 𝛾. The derivative of the loss with respect to 𝛾 is

−2(E[(𝑌 − 𝛾⊤𝑋)𝑋⊤] + E[(𝑌 − 𝛾⊤𝑋)𝐴⊤]ΩE[𝐴𝑋⊤]),

and equating to 0 and solving for 𝛾 yields

𝛾* =
(︀
E[𝑋𝑋⊤] + E[𝑋𝐴⊤]ΩE[𝐴𝑋⊤]

)︀−1(︀
E[𝑋𝑌 ⊤] + E[𝑋𝐴⊤]ΩE[𝐴𝑌 ⊤]

)︀
.

We also claim in the main text that if 𝜈 is a constant, then the minimizer of Equa-

tion (5.16) can be found by performing OLS using both 𝑋,𝐴 as predictors, and then

plugging in the known value 𝜈 for 𝐴 in prediction. We prove that result here.

Proof. If 𝜈 is a constant, then we can write the first two terms as follows, where 𝑤𝛾 is

defined in Equation (C.6).

ℓ𝐿𝑆 − 𝑏⊤𝛾 Σ𝐴𝑏𝛾

= E[(𝑤⊤
𝛾 (𝑀𝐴𝐴+ 𝜖))

2
]− 𝑤⊤

𝛾 𝑀𝐴E[𝐴𝐴⊤]𝑀⊤
𝐴 𝑏𝛾

= E[(𝑤⊤
𝛾 (𝑀𝐴𝐴+ 𝜖))

2
]− E[(𝑤⊤

𝛾 𝑀𝐴𝐴)
2
]

= E[(𝑤⊤
𝛾 𝜖)

2
]

which is equivalent to the objective for the loss when 𝑌,𝑋 are residualized with respect

to 𝐴 (see Section 8.6 of Rothenhäusler et al. (2021)). By the Frish-Waugh-Lovell

theorem (Lovell, 1963, 2008), this yields the same coefficients 𝛾 for 𝑋 as if we had

performed regression on 𝑋,𝐴 together. For this value of 𝛾, 𝑏⊤𝛾 is the coefficient that we

would obtain for 𝐴 in the joint regression, because it equals the regression coefficients

for 𝑌 − 𝛾⊤𝑋 on 𝐴.

Proof of Proposition 5.3. We use 𝜈 to denote the random shift. Let 𝜈 ∈ 𝑇 (𝜇𝜈 ,Σ𝜈),

or equivalently, let 𝜈 := 𝜇𝜈 + 𝛿, where 𝜇𝜈 is fixed and 𝛿 satisfies the constraint that
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E[𝛿𝛿⊤] ⪯ Σ𝜈 , where Σ𝜈 is a symmetric positive definite matrix. Let 𝑤𝛾 be defined

by (C.6) and for any 𝛾 let 𝑏⊤𝛾 := 𝑤⊤
𝛾 𝑀𝐴. We can write the loss as follows

sup
𝜈∈𝑇

E𝑑𝑜(𝐴:=𝜈)[(𝑌 − 𝛾⊤𝑋 − 𝛼)
2
]

= sup
𝜈∈𝑇

E[(𝑤⊤
𝛾 (𝜖+𝑀𝐴𝜈)− 𝛼)

2
]

= sup
𝜈∈𝑇

E[(𝑤⊤
𝛾 𝜖+ 𝑤⊤

𝛾 𝑀𝐴𝜈 − 𝛼)
2
]

= E[(𝑤⊤
𝛾 𝜖)

2
] + sup

𝜈∈𝑇
E[(𝑤⊤

𝛾 𝑀𝐴𝜈 − 𝛼)
2
]

= E[(𝑤⊤
𝛾 𝜖)

2
] + E[(𝑤⊤

𝛾 𝑀𝐴𝐴)
2
]

− E[(𝑤⊤
𝛾 𝑀𝐴𝐴)

2
] + sup

𝜈∈𝑇
E[(𝑤⊤

𝛾 𝑀𝐴𝜈 − 𝛼)
2
]

= ℓ𝐿𝑆(𝛾)− E[(𝑏⊤𝛾 𝐴)
2
] + sup

𝜈∈𝑇
E[(𝑏⊤𝛾 𝜈 − 𝛼)

2
],

where on the fourth line we used the fact that E[𝜖𝜈] = 0 by the fact that 𝜈 = 𝜇𝑣 + 𝛿,

and 𝛿 is independent of 𝜖. In the last line we replaced 𝑤⊤
𝛾 𝑀𝐴 by 𝑏⊤𝛾 . We can re-write

the last term as follows, where the supremum with respect to 𝛿 is constrained in the

set E[𝛿𝛿⊤] ⪯ Σ𝜈

sup
𝜈∈𝑇

E[(𝑏⊤𝛾 𝜈 − 𝛼)
2
]

= sup
𝛿:E[𝛿𝛿⊤]⪯Σ𝜈

E[(𝑏⊤𝛾 (𝛿 + 𝜇𝜈)− 𝛼)
2
]

= sup
𝛿

E[(𝑏⊤𝛾 𝛿 + 𝑏⊤𝛾 𝜇𝜈 − 𝛼)
2
]

= sup
𝛿

E[(𝑏⊤𝛾 𝛿)
2
] + 2E[(𝑏⊤𝛾 𝛿)](𝑏⊤𝛾 𝜇𝜈 − 𝛼) + E[(𝑏⊤𝛾 𝜇𝜈 − 𝛼)

2
]

= 𝑏⊤𝛾 Σ𝜈𝑏𝛾 + 2 ‖𝑏𝛾‖Σ𝜈
·
⃒⃒
𝑏⊤𝛾 𝜇𝜈 − 𝛼

⃒⃒
+ (𝑏⊤𝛾 𝜇𝜈 − 𝛼)

2
,

where ‖𝑏𝛾‖Σ𝜈
:=
√︁

𝑏⊤𝛾 Σ𝜈𝑏𝛾 is the norm induced by the inner product defined with

respect to Σ𝜈 . In the last line, we have used the fact that the expression is maximized

(subject to the constraint) by the deterministic distribution 𝛿* = ± Σ𝜈𝑏𝛾√
𝑏⊤𝛾 Σ𝜈𝑏𝛾

where the

sign depends on the sign of (𝑏⊤𝛾 𝜇𝜈 − 𝛼): 𝛿* satisfies 𝑏⊤𝛾 𝛿*𝛿
⊤
* 𝑏𝛾 = 𝑏⊤𝛾 Σ𝜈𝑏𝛾, maximizing

the first term. Further, the second term is also maximized by 𝛿*, because if any other
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random or deterministic 𝛿 satisfies |E𝑏⊤𝛾 𝛿| > |𝑏⊤𝛾 𝛿*|, it follows by Jensens inequality

that E[(𝑏⊤𝛾 𝛿)2] ≥ (E[(𝑏⊤𝛾 𝛿)])2 > (𝑏⊤𝛾 𝛿*)
2 = 𝑏⊤𝛾 Σ𝜈𝑏𝛾, such that E[𝛿𝛿⊤] ≻ Σ𝜈 , so 𝛿 is not

in the set over which the supremum is taken. Consequently, the supremum is attained

at 𝛿*, because 𝛿* maximizes both terms.

Using this expression for the supremum, we can write the objective as

sup
𝜈∈𝑇

E𝑑𝑜(𝐴:=𝜈)[(𝑌 − 𝛾⊤𝑋 − 𝛼)
2
]

= ℓ𝐿𝑆(𝛾) + 𝑏⊤𝛾 (Σ𝜈 − Σ𝐴)𝑏𝛾

+ 2 ‖𝑏𝛾‖Σ ·
⃒⃒
𝑏⊤𝛾 𝜇𝜈 − 𝛼

⃒⃒
+ (𝑏⊤𝛾 𝜇𝜈 − 𝛼)

2
,

for which the optimal choice of 𝛼* is given by 𝑏⊤𝛾 𝜇𝜈 , for any 𝛾, and for this choice of 𝛼,

we can see that 𝛾* = argmin𝛾 ℓ𝐿𝑆(𝛾) + 𝑏⊤𝛾 (Σ𝜈 − Σ𝐴) 𝑏𝛾.

C.4 Targeting with proxies

Definition C.1 (Proxy Targeted Anchor Regression). Let �̃� := E𝑑𝑜(𝐴:=𝜈)[𝑊 ] denote the

mean of 𝑊 under intervention, and let Σ̃𝑊 := Cov𝑑𝑜(𝐴:=𝜈)(𝑊 ) denote the covariance.

We define

ℓ𝑃𝑇𝐴𝑅(𝑊 ; �̃�, Σ̃𝑊 , 𝛾, 𝛼) (C.13)

= ℓ𝐿𝑆(𝛾) + 𝑐⊤𝛾

(︁
Σ̃𝑊 − Σ𝑊

)︁
𝑐𝛾 + (𝑐⊤𝛾 �̃�− 𝛼)

2
,

where 𝑐⊤𝛾 := E[𝑅(𝛾)𝑊⊤]Σ𝑊
−1.

As mentioned in the main text, Equation (C.13) is not generally equal to Equa-

tion (5.16), and does not generally yield the optimal predictor under the targeted loss.

A simple example is given in Proposition A6.

Proposition A6. Assume Assumptions 5.1, 5.2, and that E[𝜖𝑊 𝜖⊤𝑊 ] is full rank. Let

𝜈
(d)
= 𝐴 + 𝜂 for the deterministic vector 𝜂𝑇 = E[𝑅(𝛾*

𝑂𝐿𝑆)𝐴
⊤], where

(d)
= indicates
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equality of distribution, and assume 𝜂 ̸= 0. Then, the minimizers of Equations (5.16)

and (C.13) differ, in that

𝛼*
𝑃𝑇𝐴𝑅 < 𝛼*

𝑇𝐴𝑅

and if 𝑑𝑊 = 𝑑𝐴 = 1, and 𝐴 has unit variance, then
𝛼*
𝑃𝑇𝐴𝑅

𝛼*
𝑇𝐴𝑅

= 𝜌𝑊 , where 𝜌𝑊 :=

𝛽2
𝑊/(𝛽2

𝑊 + E[𝜖2𝑊 ]).

Proof. The assumption that 𝜈 = 𝐴+ 𝜂 implies that Σ𝜈 −Σ𝐴 = 0, and E[𝜈] = 𝜂. That

is, we have changed the mean of the distribution, but not the covariance. This implies

E[�̃� ] = 𝛽⊤
𝑊E[𝜈] = 𝛽⊤

𝑊𝜂

Σ�̃� − Σ𝑊 = 𝛽⊤
𝑊 (Σ𝜈 − Σ𝐴)𝛽𝑊 = 0,

where in the second equation we use the fact that Σ𝑊 = 𝛽⊤
𝑊E[𝐴𝐴⊤]𝛽𝑊 + E[𝜖𝑊 𝜖⊤𝑊 ]

(and similarly for Σ�̃� ), and the 𝜖𝑊 terms cancel in the subtraction. We can then write

both objectives as follows

ℓ𝑃𝑇𝐴𝑅(𝑊, �̃� ; 𝛾, 𝛼)

= ℓ𝐿𝑆(𝛾) +
(︀
𝑐⊤𝛾 𝛽

⊤
𝑊𝜂 − 𝛼

)︀2
= ℓ𝐿𝑆(𝛾) +

(︀
E[𝑅(𝛾)𝐴𝑇 ]𝛽𝑊Σ−1

𝑊 𝛽⊤
𝑊𝜂 − 𝛼

)︀2
ℓ𝑇𝐴𝑅(𝐴, 𝜈; 𝛾, 𝛼)

= ℓ𝐿𝑆(𝛾) +
(︀
𝑏⊤𝛾 𝜂 − 𝛼

)︀2
= ℓ𝐿𝑆(𝛾) +

(︀
E[𝑅(𝛾)𝐴𝑇 ]Σ−1

𝐴 𝜂 − 𝛼
)︀2

This gives the optimal value of 𝛼 in both cases as the value that minimizes the second

term

𝛼*
𝑃𝑇𝐴𝑅 = E[𝑅(𝛾*

𝑃𝑇𝐴𝑅)𝐴
𝑇 ](𝛽𝑊Σ−1

𝑊 𝛽⊤
𝑊 )𝜂

𝛼*
𝑇𝐴𝑅 = E[𝑅(𝛾*

𝑇𝐴𝑅)𝐴
𝑇 ]Σ−1

𝐴 𝜂,

and since the second term can be made equal to zero by these choices of 𝛼, the optimal
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𝛾 in both cases is identically 𝛾*
𝑃𝑇𝐴𝑅 = 𝛾*

𝑇𝐴𝑅 = 𝛾*
𝑂𝐿𝑆, the value of 𝛾 that minimizes the

first term ℓ𝐿𝑆(𝛾). Hence, we can write the difference between these terms as

𝛼*
𝑇𝐴𝑅 − 𝛼*

𝑃𝑇𝐴𝑅

= E[𝑅(𝛾*
𝑂𝐿𝑆)𝐴

𝑇 ](Σ−1
𝐴 − 𝛽𝑊Σ−1

𝑊 𝛽⊤
𝑊 )E[𝐴𝑅(𝛾*

𝑂𝐿𝑆)],

where we have replaced 𝜂 with the assumed value of E[𝐴𝑅(𝛾*
𝑂𝐿𝑆)]. By assumption,

Σ𝐴 is full-rank, so that matrix Ω := (Σ−1
𝐴 − 𝛽𝑊Σ−1

𝑊 𝛽⊤
𝑊 ) is positive definite if and only

if Σ𝐴ΩΣ𝐴 is positive definite. Working with this representation, we can see that

Σ𝐴ΩΣ𝐴 = Σ𝐴 − Σ𝐴𝛽𝑊Σ−1
𝑊 𝛽𝑇

𝑊Σ𝐴

= E[𝐴𝐴⊤]− E[𝐴𝑊⊤]E[𝑊𝑊⊤]
−1E[𝑊𝐴⊤]

≻ 0,

where the last line follows from Proposition A3. In the case where 𝑑𝑊 = 𝑑𝐴 = 1, and

𝐴 has unit variance, then let 𝜌𝑊 = 𝛽2
𝑊/(𝛽2

𝑊 + E[𝜖2𝑊 ]), and observe that

𝛼*
𝑃𝑇𝐴𝑅 = 𝜂2𝜌𝑊 𝛼*

𝑇𝐴𝑅 = 𝜂2.

Proposition A6 describes a worst-case mean-shift in 𝐴, where 𝜂 is taken in the direction

that maximizes the loss of the OLS solution 𝛾*
𝑂𝐿𝑆. This is also a particularly simple case

to analyze for building intuition, because the optimal solution to both Equations (5.16)

and (C.13) is to take 𝛾 = 𝛾*
𝑂𝐿𝑆 and to estimate an intercept term 𝛼 equal to the

bias incurred by the shift in the mean of 𝐴. However, the noise in 𝑊 results in

under-estimating the impact of the shift, and the gap to the optimal solution depends

on the signal-to-variance relationship in 𝑊 , which (as discussed in Section 5.3) is not

generally identified.

We also prove that the Cross-Proxy Targeted Anchor Regression objective is equal to

that of Targeted Anchor Regression.
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Theorem C.1. Under Assumptions 5.1, 5.3, and 5.4, for all 𝛾 ∈ R𝑑𝑋 , 𝛼 ∈ R,

ℓ×𝑇𝐴𝑅(𝑊,𝑍; �̃�, Σ̃𝑊 , 𝛾, 𝛼) = E𝑑𝑜(𝐴:=𝜈)[(𝑌 − 𝛾⊤𝑋 − 𝛼)
2
]

where �̃� := E𝑑𝑜(𝐴:=𝜈)[𝑊 ] is the mean of 𝑊 under intervention, and Σ̃𝑊 is the covariance

Σ̃𝑊 := Cov𝑑𝑜(𝐴:=𝜈)(𝑊 ).

Proof of Theorem C.1. We have

𝑎⊤𝛾 = E[𝑅(𝛾)𝑍⊤](E[𝑊𝑍⊤])
−1

= E[𝑅(𝛾)(𝐴⊤𝛽𝑍 + 𝜖⊤𝑍)]

E[(𝛽⊤
𝑊𝐴+ 𝜖𝑊 )(𝛽⊤

𝑍𝐴+ 𝜖𝑍)
⊤
]
−1

= E[𝑅(𝛾)𝐴⊤]𝛽𝑍(𝛽
⊤
𝑊E[𝐴𝐴⊤]𝛽𝑍)

−1

= E[𝑅(𝛾)𝐴⊤](E[𝐴𝐴⊤])
−1
(𝛽⊤

𝑊 )
−1
,

while

�̃� = 𝛽⊤
𝑊E[𝜈]

Σ̃𝑊 − Σ𝑊 = 𝛽⊤
𝑊 (Σ𝜈 − Σ𝐴)𝛽𝑊 .

With 𝑏⊤𝛾 := 𝑤⊤
𝛾 𝑀𝐴 and 𝑤𝛾 defined by (C.6), we have that

𝑎⊤𝛾 �̃� = 𝑏⊤𝛾 E[𝜈]

𝑎⊤𝛾 (Σ̃𝑊 − Σ𝑊 )𝑎𝛾 = 𝑏⊤𝛾 (Σ𝜈 − Σ𝐴)𝑏𝛾,

which is equivalent to ℓ𝑇𝐴𝑅(𝐴;𝜇𝜈 ,Σ𝜈 , 𝛾, 𝛼) (Definition 5.4, Equation (5.16)). The

proof is complete by Proposition 5.2.

Note that the argument is symmetric for using an observed shift in either 𝑍 or 𝑊 , so

it suffices to know the anticipated shift with respect to one proxy.
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C.5 Details for experiments

C.5.1 Details of Section 5.5.1

We outline the details of the simulation experiment in Section 5.5.1.

Summary We simulate a training data set 𝒟train from a SCM that induces the

structure in Figure 5-2, fix 𝜆 := 5 and fit estimators PAR(𝑊 ) and xPAR(𝑊,𝑍). We

consider the intervention P𝑑𝑜(𝐴:=𝜈) with 𝜈 = (−2.83, 0.35, 0.71)⊤, and simulate a test

data set 𝒟test from that distribution. We then compute the intervention mean squared

prediction error (MSPE) Ê𝑑𝑜(𝐴:=𝜈)[(𝑌 − 𝛾⊤𝑋)2] both for PAR(𝑊 ) and xPAR(𝑊,𝑍).

We repeat this procedure 𝑚 = 105 times for several signal-to-variance ratios 𝑥 (not

including 0), and display the quantiles of the losses in Figure 5-5. We also plot the

population losses E𝑑𝑜(𝐴:=𝜈)[(𝑌 − 𝛾⊤𝑋)2] for PAR(𝑊 ) and xPAR(𝑊,𝑍), as well as

AR(𝐴) and OLS.

Technical details We let E[𝐴𝐴⊤] = 𝛽 = Id and E[𝜖𝑊 𝜖⊤𝑊 ] = 𝑠2 Id, such that 𝑊 =

𝛽⊤𝐴+ 𝑠 · 𝜖𝑊 . Then Ω𝑊 as defined in Equation (5.11) simplifies to

Ω𝑊 = E[𝐴𝐴⊤]𝛽(𝛽⊤E[𝐴𝐴⊤]𝛽 + E[𝜖𝑊 𝜖⊤𝑊 ])−1𝛽⊤E[𝐴𝐴⊤]

=
1

1 + 𝑠2
Id .

We call 𝑥 = (1 + 𝑠2)−1 the signal-to-variance ratio, and we can obtain a given

signal-to-variance ratio 𝑥, by setting 𝑠 =
√︀

(1− 𝑥)/𝑥.

For each 𝑛 ∈ {150, 500} and signal-to-variance ratio 𝑥 ∈ {1/20, 2/20, . . . , 20/20}, we

set 𝑠 =
√︀

(1− 𝑥)/𝑥 and sample a data set 𝒟𝑖
𝑛,𝑠 for 𝑖 = 1, . . . , 5000, each with sample

size 𝑛, from the structural equations:

𝐴 := 𝜖𝐴 (C.14)

𝑊 := 𝐴+ 𝑠 · 𝜖𝑊
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𝑍 := 𝐴+ 𝑠 · 𝜖𝑍

(𝑌,𝑋,𝐻) := (Id−𝐵)−1(𝑀𝐴+ 𝜖),

where 𝑑𝐴 = 𝑑𝑊 = 𝑑𝑍 = 𝑑𝑋 = 3, 𝑑𝑌 = 𝑑𝐻 = 1. 𝑀 and 𝐵 are given by

𝑀 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −2

0 2 1

−1 3 0

2 2 −3

0 −2 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝐵 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −2 2 0 1

0 0 0 0 0

0 0 0 0 0

3 0 0 0 1

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and all noise variables are i.i.d., 𝜖𝐴, 𝜖𝑊 , 𝜖𝑍 , 𝜖 ∼ 𝒩 (0, Id). For every combination (𝑛, 𝑠)

we have 5000 data sets 𝒟𝑖
𝑛,𝑠 , 𝑖 = 1, . . . , 5000. For each data set, we compute the

proxy estimators 𝛾𝑖
𝑛,𝑠,𝑊 and 𝛾𝑖

𝑛,𝑠,𝑊 ;𝑍 , using one or two proxies respectively, and we

simulate 5000 corresponding test data sets of size 𝑛 from P𝑑𝑜(𝐴:=𝜈) (using the structural

equations above, except for changing the assignment for 𝐴 to 𝐴 := 𝜈). The prediction

MSE for the i’th test data set is then 1
𝑛

∑︀𝑛
𝑗=1(𝑌𝑗 − 𝛾⊤𝑋𝑗)

2, resulting in 5000 values of

the MSE for each combination of (𝑛, 𝑠).

At each combination of (𝑛, 𝑠) we plot the median by a line of the estimated worst

case losses, and by a shaded region indicate the interval between the 25% and 75%

quantiles of the observed distribution. We plot the median instead of the mean since

for small 𝑥, 𝑠2 = 1−𝑥
𝑥

is large, and especially for WCL𝑖
𝑛,𝑠(𝑊,𝑍) and 𝑛 = 150, the mean

will be driven very much by outliers for small 𝑥.

The population versions of losses for any 𝑠 is computed first by computing the

population estimators 𝛾 from the parameter matrices 𝑀,𝐵, and then computing the

loss at 𝜈 by E𝑑𝑜(𝐴:=𝜈)[(𝑌 − 𝛾⊤𝑋)2] = 𝑤⊤
𝛾 𝑀𝜈𝜈⊤𝑀⊤𝑤𝛾 + 𝑤⊤

𝛾 E[𝜖𝜖⊤]𝑤𝛾.

C.5.2 Details of Section 5.5.2

We outline the details of the simulation experiment in Section 5.5.2.
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Summary We analyze the effect of applying anchor regression with one proxy,

PAR(𝑊 ), when the signal-to-variance ratio is potentially misspecified. To do so, we

simulate data from the same SCM as in Section 5.5.1 (𝑛 = 104), and in particular from

a range of true (unknown) signal-to-variance ratios 𝑥 ∈ (0, 1]. To each data set, we

apply anchor regression with one proxy, PAR(𝑊 ), and with 𝜆 := 5. We further assume

the signal-to-variance ratio to be 40% – independently of its true value. This means, by

Proposition 5.1, that we assume that PAR(𝑊 ) minimizes the worst case mean squared

prediction error (MSPE) over the region 𝐶 := {𝜈𝜈⊤ ⪯ (1 + 0.4 · 𝜆)E[𝐴𝐴⊤]}, with

the worst case MSPE for being equal to the optimal value of the PAR(𝑊 ) objective

function. If 𝑥 = 0.4, then PAR(𝑊 ) indeed minimizes the worst case MSPE over 𝐶 and

the estimated worst case MSPE over 𝐶 is close to the actual worst case MSPE over 𝐶.

But if 𝑥 ̸= 0.4, the estimator minimizes the worst case MSPE over a different set, and

then expect that the true worst case MSPE over 𝐶 differs from its estimate. Figure 5-6

shows that this is indeed the case: We observe that if the true signal-to-variance ratio

is larger than the assumed 40%, our estimate of the MSPE is too conservative. On

the contrary, if the true signal-to-variance ratio is smaller than assumed, our estimates

of the MSPE over C are too small, meaning that we underestimate the worst case

MSPE in the region 𝐶.

Technical details For a fixed signal-to-variance ratio 𝑥, we simulate a training data

set 𝒟train (𝑛 = 104) from the same procedure as in Section C.5.1, i.e. using the

structural equations in Equation (C.14), and with the same parameters 𝑀 and 𝐵. We

fit the PAR(𝑊 ) estimator to the data using 𝜆 := 5, and the estimated worst case mean

squared prediction error (MSPE) over C is then the value of the objective function in

the estimated parameter (by Theorem 5.1).

To find the actual worst case MSPE over C for a given estimator 𝜆, we use the fact

from Equation (C.7) that

E𝑑𝑜(𝐴:=𝑣)[(𝑅− 𝛾⊤𝑋)2] = (𝑏⊤𝛾 𝑣)
2 + 𝑤⊤

𝛾 𝑤𝛾, (C.15)
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where we use that E[𝜖𝜖⊤] = Id, 𝑤𝛾 is given by Equation (C.6) and 𝑏⊤𝛾 = 𝑤⊤
𝛾 𝑀𝐴. The

second term doesn’t depend on 𝑣, and since 𝐶 is spherical, the worst case MSPE over

𝐶 is attained in the direction 𝑣 ∝ 𝑏𝛾 , with 𝑣 normalized such that ‖𝑣‖2 = (1 + 0.4 · 𝜆)

(that is 𝑣 lies on the boundary of 𝐶). Using the known 𝑀 and 𝐵, we compute 𝑤𝛾 , 𝑏𝛾 ,

and the actual worst case MSPE over 𝐶 is given by Equation (C.15) plugging in

𝑣 = 𝑏𝛾 ·
√︀

(1 + 0.4 · 𝜆)/‖𝑏𝛾‖.

We compute also the worst case MSPE over 𝐶 when using an OLS estimator for

the prediction. We fit 𝛾𝑂𝐿𝑆 from 𝒟𝑡𝑟𝑎𝑖𝑛, and, as for the actual MSPE of PAR(𝑊 ),

the worst case MSPE over 𝐶 using OLS can be computed, by computing vectors

𝑏𝛾𝑂𝐿𝑆
, 𝑤𝛾𝑂𝐿𝑆

. Again the worst case MSPE over 𝐶 using 𝛾𝑂𝐿𝑆 is attained by setting 𝑣 =

𝑏𝛾𝑂𝐿𝑆
·
√︀

(1 + 0.4 · 𝜆)/‖𝑏𝛾𝑂𝐿𝑆
‖ and plugging 𝑣, 𝑏𝛾𝑂𝐿𝑆

and 𝑤𝛾𝑂𝐿𝑆
into Equation (C.15).

For every signal-to-variance ratio 𝑥 ∈ {1/20, . . . , 20/20}, we repeat the procedure

𝑚 = 1000 times, for each computing the estimated and actual MSPEs. In Figure 5-6

we plot the median MSPE as well as the interval from the 25% quantile to the 75%

quantile.

C.5.3 Details of Section 5.5.3

We outline the details of the simulation experiment in Section 5.5.3.

Summary We demonstrate the ability of Proxy Anchor Regression to select invariant

predictors, in a synthetic setting where predictors 𝑋 may contain both causal and

anti-causal predictors. We simulate data sets (𝑛 = 105) from a SCM with the structure

shown in Figure 5-7 (top), where one anchor, 𝐴1, is a parent of the causal predictors,

while the other 𝐴2 is a parent of the anti-causal predictors.

We consider two identically distributed noisy proxies 𝑊,𝑍 of 𝐴 := (𝐴1, 𝐴2). The

challenge, in this scenario, is that 𝐴2 is measured with significantly more noise than

𝐴1, across both proxies. As a consequence, proxy anchor regression with one proxy,

PAR(𝑊 ), puts more weight on anti-causal features: the noise in 𝑊 is mistaken for
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fluctuations in 𝐴2, resulting in 𝑋anti-causal mistakenly appearing invariant to shifts in 𝐴2.

In contrast, when two proxies 𝑊,𝑍 are available, the estimator xPAR(𝑊,𝑍) asymp-

totically equals that of anchor regression with observed anchors, and its regression

coefficients puts more weight on the causal predictors; see Figure 5-7 (bottom).

Technical details With 𝑑𝐴1 = 𝑑𝐴2 = 𝑑𝑊 = 𝑑𝑊 = 6, 𝑑𝑋causal
= 𝑑𝑋anti-causal

= 3 and

𝑑𝑌 = 1, we simulate data from the SCM in Figure 5-7 (top) which amounts to

simulating from the following structural equations:

𝐴1 := 𝜖𝐴1

𝐴2 := 𝜖𝐴2

𝑊 := (𝐴1, 𝐴2)
⊤ + (𝜖𝑊,1, 𝜖𝑊,2)

⊤

𝑍 := (𝐴1, 𝐴2)
⊤ + (𝜖𝑍,1, 𝜖𝑍,2)

⊤

𝑋causal := 𝑀1𝐴1 + 𝜖𝑋causal

𝑌 := 𝛾⊤
causal𝑋causal + 𝜖𝑌

𝑋2 := 𝑀2𝐴2 + 𝛾anti-causal𝑌 + 𝜖𝑋anti-causal
.

Here 𝑀1 ∈ R𝑑𝑋causal
×𝑑𝐴1 and 𝑀2 ∈ R𝑑𝑋anti-causal

×𝑑𝐴2 are matrices with 1 in every

entry, 𝛾causal = (1/4, 1/4, 1/4)⊤ and 𝛾anti-causal = (4, 4, 4)⊤ (such that the regression

coefficients of 𝑌 onto 𝑋causal, 𝑋anti-causal are of similar magnitudes). All noise terms are

independent and 𝜖𝐴1 , 𝜖𝐴2 , 𝜖𝑋causal
, 𝜖𝑋anti-causal

, 𝜖𝑌 ∼ 𝒩 (0, Id), and 𝜖𝑊,1, 𝜖𝑍,1 ∼ 𝒩 (0, Id),

𝜖𝑊,2, 𝜖𝑍,2 ∼ 𝒩 (0, 32 · Id).

We simulate a data set 𝒟 (𝑛 = 105) from these structural equations, and fit the proxy

anchor regression estimators 𝛾(𝑊 ) and 𝛾(𝑊,𝑍) from Section 5.3. We repeat this

𝑚 = 104 times, and display the mean absolute value of the regression coefficients (that

is the entries of the vectors 𝛾(𝑊 ) and 𝛾(𝑊,𝑍)) in Figure 5-7 (bottom), as well as the

standard deviation of the absolute value of the regression coefficients as error bars.
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C.5.4 Details of Section 5.5.4

Summary We demonstrate the trade-off made by Targeted Anchor Regression (TAR)

versus Anchor Regression (AR), considering the case when 𝐴 is observed for simplicity.

We simulate training data and fit estimators 𝛾OLS, 𝛾AR and 𝛾TAR, where 𝛾TAR is

targeted to a particular mean and covariance of a random intervention 𝑑𝑜(𝐴 := 𝜈),

and we select 𝜆 for 𝛾AR such that this intervention is contained within 𝐶𝐴(𝜆). We

then simulate test data from two distributions: P𝑑𝑜(𝐴:=𝜈) (i.e., the shift occurs), and

P (where it does not), and evaluate the mean squared prediction error (MSPE). The

results are shown in Figure 5-8, and demonstrated that TAR performs better than

AR and OLS in the first scenario, but this comes at the cost of worse performance on

the training distribution.

Technical details The entire procedure below produces a prediction MSE for each of

three methods and two settings, and we repeat this 𝑚 = 105 times, to produce the

histograms of MSEs shown in Figure 5-8.

We simulate a training data set 𝒟train (𝑛train = 105) from the structural equations

𝐴 := 𝜖𝐴

(𝑌,𝑋,𝐻) := (Id−𝐵)−1(𝑀𝐴+ 𝜖),

where 𝑑𝐴 = 𝑑𝑋 = 2 and 𝑑𝑌 = 𝑑𝐻 = 1, 𝜖𝐴, 𝜖 ∼ 𝒩 (0, Id) and 𝑀 and 𝐵 were selected by

a simulation resulting in:

𝑀 =

⎛⎜⎜⎜⎜⎜⎜⎝
2 1

0 1

2 2

0 3

⎞⎟⎟⎟⎟⎟⎟⎠ , 𝐵 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 −0.06 0.07 0.04

0.05 0 0.19 0.03

0.11 −0.11 0 0.1

−0.02 0.02 0.09 0

⎞⎟⎟⎟⎟⎟⎟⎠ .
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We consider the target distribution 𝑑𝑜(𝐴 := 𝜅⊤𝐴+ 𝜂) where

𝜅 =

⎛⎝√2 0

0 1

⎞⎠ , 𝜂 =

⎛⎝0

2

⎞⎠ ,

and so we fit the targeted AR estimator (𝛾targeted-AR, 𝛼targeted-AR) from Equation (5.16),

where the covariance of the anticipated shift is given by Σ𝜈 := 𝜅⊤E[𝐴𝐴⊤]𝜅, and the

mean shift is simply 𝜂. We also fit OLS estimates 𝛾OLS(𝑋, 𝑌 ) and 𝛾AR(𝑋, 𝑌,𝐴) where

for AR we select 𝜆 such that (1+𝜆) equals the largest eigenvalue of 𝜅⊤E[𝐴𝐴⊤]𝜅+ 𝜂𝜂⊤,

such that E[(𝜅⊤𝐴+ 𝜂)(𝜅⊤𝐴+ 𝜂)⊤] ⪯ (1 + 𝜆)E[𝐴𝐴⊤].

We then simulate a test data set (𝑛test = 105) both from 1) the training distribution

(i.e. same simulation procedure as for the training set) or 2) by changing the structural

equation for 𝐴 to 𝐴 := 𝜅⊤𝜖𝐴 + 𝜂, and keeping all other quantities as for the simulation

of training data (i.e. the test distribution is the anticipated distribution). We evaluate

the prediction MSE on each of the data sets by 1
𝑛test

∑︀
𝑗(𝑌𝑗 − 𝛾⊤𝑋𝑗)

2 (including the

term 𝛼targeted-AR for the targeted AR).

C.5.5 Details of Section 5.6

Features The dataset contains time-stamps as well as season indicators, which we

do not use anywhere as features. The remaining features are Dew Point (Celsius

Degree), Temperature (Celsius Degree), Humidity (%), Pressure (hPa), Combined

wind direction (NE, NW, SE, SW, or CV, indicating calm and variable), Cumulated

wind speed (m/s), Hourly precipitation (mm), and Cumulated precipitation (mm).

Data Processing Each city has PM2.5 readings from multiple sites, which we av-

erage to get a single reading, and we take a log transformation. For Precipitation

(Cumulative) we subtract off the (current hour) precipitation to avoid co-linearity.

We take a log transformation of the variable for Wind Speed, Precipitation (Hourly)

and Precipitation (Cumulative), due to skewness. We drop all rows that contain any
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missing data.

Proxies (Temperature) We use temperature as our proxy variable, and treat it as

unavailable at test time. We construct two synthetic proxies of temperature to serve

as 𝑊,𝑍, adding independent Gaussian noise while controlling the signal-to-variance

ratio (in the training distribution) at Var(𝐴)/Var(𝑊 ) = 0.9. This results in different

standard deviations of the Gaussian noise across different environments, because

of differences in the training distributions across training seasons and cities. The

standard error of the noise varies between 2 and 5 degrees, to maintain the same

signal-to-variance ratio.

Training Details (PAR, xPAR) For the distributional robustness approaches de-

scribed in Section 5.3, we choose 𝜆 ∈ [0, 40] by leave-one-group-out cross-validation

on the three training seasons, using the first year (2013) of data. For Proxy Anchor

Regression using Temperature directly, there is heterogeneity in the cross-validated

choice of 𝜆: In 9 out of 20 scenarios, 𝜆 = 40 is chosen, but in the remaining 11, 𝜆 = 0 is

chosen, which is equivalent to OLS. We saw a similar result when the maximum value

of 𝜆 was 20, and increased the maximum limit to 40 without seeing much difference, so

we did not increase it further. Concretely, with 𝜆 in [0, 20], there are some scenarios

where PAR (TempC) has slightly worse or slightly better MSE (vs. 𝜆 in [0, 40]), but

the differences are all less than 0.001. The only observable difference in Table 5.1

when running with 𝜆 in [0, 20] is that the “best” performance is -0.040 (𝜆 = 20), as

opposed to -0.041 (𝜆 = 40) [where lower is better, rounded to nearest 0.001]. For

Proxy Anchor Regression using 𝑊 and for Cross-Proxy Anchor Regression (xPAR)

using 𝑊,𝑍 together, we use the same values of 𝜆 as above, for comparability.

Training Details (PTAR, xPTAR) For the targeted approaches described in Sec-

tion 5.4, we use the mean and variance of the temperature in the test distribution

to target our predictors, and similarly use the distribution of the proxies when using

Proxy Targeted Anchor Regression (PTAR) with 𝑊 and Cross-Proxy TAR (xPTAR)
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Table C.1: MSE (lower is better) over 20 scenarios consisting of five cities and four
held-out seasons. Average difference to OLS estimator (lower is better) given in the
second column, and minimum / maximum difference in remaining columns.

Estimator Mean Diff Min Max

OLS 0.457
OLS (TempC) 0.455 -0.002 -0.028 0.026
OLS + Est. Bias 0.474 0.018 -0.072 0.150

PAR (TempC) 0.454 -0.003 -0.041 0.006
PAR (W) 0.454 -0.002 -0.037 0.006
xPAR (W, Z) 0.454 -0.003 -0.039 0.007

PTAR 0.450 -0.007 -0.061 0.002
PTAR (W) 0.452 -0.005 -0.038 0.001
xPTAR (W, Z) 0.450 -0.007 -0.059 0.003

with 𝑊,𝑍. Note that xPTAR (unlike xPAR) is asymmetric in the proxies, but in this

case the proxies are distributed identically.

Benchmarks As described in the main text, our primary benchmark is OLS, trained

on the three training seasons, evaluated on the held-out season. We also include two

other baselines: First, OLS that has access to temperature during both train and

test, which we denote OLS (TempC), and OLS that includes temperature during

training, and attempts to estimate a bias term by plugging in the mean (test) value

for temperature during prediction.

In Table C.1 we give the full results over all 20 scenarios, which includes the 11

scenarios where 𝜆 = 0 is chosen by cross-validation, rendering the PAR and xPAR

solutions equivalent to OLS.

Regularization paths In Figure C-4 we have shown how the solution in the “best”

scenario differs for Proxy Anchor Regression (PAR) with 𝜆 = 40 versus OLS (i.e.,

𝜆 = 0). In Figure C-5, we show how the coefficients change in-between these two

extremes: for every integer value of 𝜆 in [0, 40] we show the difference in the PAR

vs. OLS coefficients for each feature. Increasing 𝜆 further does not make a significant

418



difference for this particular example.
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Figure C-3: Best performance for Proxy Anchor Regression (PAR) and Proxy Targeted
AR (PTAR), corresponding to Summer in Beijing. Variance estimates generated by
bootstrapping the test residuals of the fitted models.
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Figure C-4: Comparison of learned coefficients. All variables were standardized to unit
variance. The intercept for OLS and AR is the same (by construction) at 𝛼 = 4.087
while the intercept for TAR is lower at 𝛼 = 3.885.
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Figure C-5: Coefficient path, showing the difference between the PAR and OLS
coefficients in Figure C-4 for different values of 𝜆.
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C.6 Additional experiment: Signal-to-variance ratio

To examine the effect of the signal strengths 𝛽𝑊 and 𝛽𝑍 , we scale the signals 𝛽𝑊,𝑠 =

𝛽𝑍,𝑠 = 𝑠 Id for 𝑠 ∈ {0,
√︀

2/3, 0.8}, which for the single proxy estimator 𝛾PAR amounts to

optimizing over worst case loss in the robustness regions 𝐶(𝜆) = {𝑣𝑣⊤ ⪯ (1+𝜆 𝑠2

1+𝑠2
) Id}.

For 𝑠 ∈ {1, 3}, such that the signal-to-variance ratio 𝑠2

1+𝑠2
equals either 10% or 50%,

we simulate a training data set 𝒟train with two proxies 𝑊 and 𝑍 from the structural

equations 𝐴 := 𝜖𝐴, (𝑋
⊤, 𝑌 ⊤, 𝐻⊤)⊤ := (1 − 𝐵)−1(𝑀𝑎𝐴 + 𝜖),𝑊 := 𝛽⊤

𝑊,𝑠𝐴 + 𝜖𝑊 and

𝑍 := 𝛽⊤
𝑍,𝑠𝐴+ 𝜖𝑍 where all noise terms are i.i.d with unit covariance and 𝑀𝐴, 𝐵 are

given by:

𝑀 :=

⎛⎜⎜⎜⎜⎜⎜⎝
2 1

0 1

2 2

0 3

⎞⎟⎟⎟⎟⎟⎟⎠ , 𝐵 :=

⎛⎜⎜⎜⎜⎜⎜⎝
0 −0.57 0.73 0.37

0.53 0 1.91 0.33

1.14 −1.13 0 0.96

−0.22 0.16 0.87 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

Since for this experiment we are not interested in finite sample properties of the

estimators, we use sample size 𝑛 = 107.

For each data set we fit estimators 𝛾PAR(𝑊 ) (using only one proxy), 𝛾xPAR(W, Z) (using

both proxies), 𝛾AR(𝐴), and 𝛾OLS, and evaluate the estimators at data sampled from

interventional distributions P𝑑𝑜(𝐴:=𝑣) for several interventions 𝑣 of increasing strength

(i.e. increasing distance from E[𝐴] = 0).

As the signal to variance ratio increases, the PAR(𝑊 ) loss approaches the AR(𝐴).

Further we observe that xPAR(𝑊,𝑍) coincides with the 𝐴𝑅(𝐴) estimator for both

signal-to-variance levels. This is illustrated in Figure C-6.
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Figure C-6: Anchor and proxy estimators for different levels of signal-to-variance
ratio 𝛽(E[𝑊𝑊⊤])−1𝛽⊤. A training data set (𝑛 = 107) with two proxies 𝑊,𝑍 is
simulated and the estimators 𝛾PAR(𝐴), 𝛾xPAR(𝑊,𝑍), 𝛾AR(𝐴), and 𝛾OLS are fitted using a
fixed 𝜆. Interventions 𝑣 of increasing strength is sampled, and for each a new data set
(𝑛 = 105) is sampled from P𝑑𝑜(𝐴:=𝑣), and for each estimator 𝛾, the prediction mean
squared error E𝑑𝑜(𝐴:=(𝑣1,𝑣2))[(𝑌 − 𝛾⊤𝑋)2] is computed. This procedure is repeated for
signal-to-variance ratios 10% and 50%.
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Appendix D

Appendix for Chapter 6

This appendix is structured as follows:

• In Appendix D.1, we provide details on the synthetic lab testing example,

including how we generate the loss landscape in Figure 6-1b.

• In Appendix D.2, we provide a “user’s guide” to defining and interpreting

parametric shifts, including worked examples for many common conditional

distributions, as well as guidance on how to define and interpret the shift

functions 𝑠(𝑍; 𝛿).

• In Appendix D.3, we provide additional details on the worst-case optimization

problem, as well as comparisons of the reweighting-based approach to the Taylor

approximation approach. We also demonstrate that the quadratic approximation

is exact, for particularly simple structural causal models.

• In Appendix D.4, we compare our approach to that of worst-case conditional

subpopulation shifts, in the context of a simpler laboratory testing example

where we can explicitly compute the worst-case conditional subpopulations. Here,

we demonstrate that our approach can capture more realistic intuition regarding

which shifts are plausible in practice.
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• In Appendix D.5, we give additional experimental details, as well as illustra-

tive samples from the generative model, for the CelebA experiment described

in Section 6.4.

• In Appendix D.6, we give an extended discussion of related work.

• In Appendix D.7, we give proofs for all the results in the corresponding chapter

of this thesis.

D.1 Details of Figure 6-1b

In Figure 6-1b, we consider the following, artificial, generative model, which resembles

the setup in Section 6.4.1, but with the addition of age as a continuous variable.

Age ∼ 𝒩 (0, 0.52)

P(Disease = 1|Age) = sigmoid(0.5 · Age− 1)

P(Order = 1|Disease, Age) = sigmoid(2 ·Disease + 0.5 · Age− 1)

Test Result|Order = 1,Disease ∼ 𝒩 (−0.5 + Disease, 1)

where if Order = 0, the test result is a placeholder value of zero. In Figure 6-1b, we

consider a simple predictive model: If lab tests are not available (Order = 0), this

model predicts disease based on an unregularized logistic regression model, which uses

age to predict disease. If a lab test is available, then it uses both age and the lab test

for prediction. This model is trained on 100,000 samples from the training distribution.

To construct the loss landscape shown in Figure 6-1b, we first observe that

P(𝑂 = 1|Disease,Age) = sigmoid(𝜂(Disease,Age)),

where

𝜂(Disease,Age) = 2 ·Disease + 0.5 · Age− 1.
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We construct shifts using the shift function 𝑠(Disease,Age; 𝛿) = 𝛿0 · (1− Disease) +

𝛿1 · Disease, and for a grid of values for (𝛿0, 𝛿1) ∈ [−5, 5]2 we consider perturbed

distributions with a different conditional distribution of testing,

P𝛿(𝑂 = 1|Disease, Age) = sigmoid

(︂
𝜂(Disease,Age) + 𝛿0 · (1−Disease) + 𝛿1 ·Disease

)︂
,

but where all other parts of the generative model are fixed. For each value of

(𝛿0, 𝛿1) ∈ [−5, 5]2, we draw 10,000 samples from the corresponding distribution, and

compute the negative log-likelihood of the original predictive model under this new

distribution. The resulting surface is plotted in Figure 6-1b.

D.2 A user’s guide to defining parametric shifts

In this section, we discuss practical considerations in designing parametric shift

functions for different distributions.

• In Appendix D.2.1, we give examples of conditional exponential families, illus-

trative shift functions, and how to interpret them.

• In Appendix D.2.2, we formalize the idea that one can choose shift functions

which depend on additional variables, other than the causal parents of a variable

𝑊𝑖.

• In Appendix D.2.3 we give guidance on how to define shift functions when the

parameters 𝜂(𝑍) are constrained to lie in a particular domain, which is relevant

for considering shifts such as changing the variance of a conditional Gaussian.
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Table D.1: Examples of conditional exponential family distributions.

Distribution Parameter space Sufficient statistic Inverse parameter map

Binary(𝑝) 𝜂(𝑍) ∈ R 𝑇 (𝑊 ) = 𝑊 𝑝(𝑊 = 1|𝑍) = sigmoid(𝜂(𝑍))
Categorical(𝑝1, . . . , 𝑝𝑘) 𝜂(𝑍) ∈ R𝑘 [𝑇 (𝑊 )]𝑖 = 1 {𝑊 = 𝑖} P(𝑊 = 𝑖|𝑍) = [softmax(𝜂(𝑍))]𝑖
Poisson(𝜆) 𝜂(𝑍) ∈ R 𝑇 (𝑊 ) = 𝑊 𝜆 = exp(𝜂(𝑍))

Gaussian(𝜇, 𝜎2) 𝜂(𝑍)1 ∈ R, 𝜂(𝑍)2 < 0 𝑇 (𝑊 ) = (𝑊,𝑊 2) 𝜇(𝑍) = − 𝜂(𝑍)1
2𝜂(𝑍)2

, 𝜎2(𝑍) = − 1
2𝜂(𝑍)2

Gamma(𝛼, 𝛽) 𝜂(𝑍)1 > −1, 𝜂(𝑍)2 < 0 𝑇 (𝑊 ) = (log𝑊,𝑊 ) 𝛼(𝑍) = 𝜂(𝑍)1 + 1, 𝛽(𝑍) = −𝜂(𝑍)2

D.2.1 Conditional exponential family models and interpretations of

shifts

In this section, we give examples of exponential families and their sufficient statistics,

and discuss design considerations in specifying the shift function 𝑠(𝑍; 𝛿). Here, we

restrict attention to shifts in a single variable, for ease of notation. In Table D.1 we give

examples of conditional exponential families, along with their typical parameterizations.

In the examples below, we review how shift functions 𝑠(𝑍; 𝛿) impact these parameters,

and how they can also be interpreted on the scale of more commonly considered

parameters (e.g., conditional means and variances).

Example D.2.1 (Log-odds shift in a binary variable). Consider the distribution of a

binary variable 𝑊 conditioned on variables 𝑍. Without loss of generality, we can

write that

P(𝑊 = 1|𝑍) = 𝜎(𝜂(𝑍))

where 𝜎 is the sigmoid function, and 𝜂(𝑍) is an arbitrary measurable function of 𝑍,

taking on values in the extended real line 𝜂(𝑍) ∈ R∪{−∞,+∞}. This can be written

in canonical form as

P(𝑊 |𝑍) = exp

{︂
𝜂(𝑍) ·𝑊 − log(1 + exp𝜂(𝑍))

}︂

where 𝜂(𝑍) is the canonical parameter (the log-odds ratio), 𝑇 (𝑊 ) = 𝑊 is the sufficient

statistic, and ℎ(𝜃) = log(1 + exp𝜂(𝑍)) is the normalizing constant. We can consider
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shifts 𝜂𝛿(𝑍) := 𝜂(𝑍) + 𝛿, yielding the new conditional distribution

P𝛿(𝑊 = 1|𝑍) = 𝜎(𝜂(𝑍) + 𝛿),

which is well-defined for any 𝛿 ∈ R.

Here, we note that these shifts occur on the “natural” parameter scale 𝜂(𝑍) (e.g.,

the log-odds), which at first glance may seem difficult to interpret: Why should we

care about changes on the log-odds scale, instead of on the original probability scale?

In addition to mathematical convenience, we argue that in some settings, working

with natural parameters is advantageous for retaining a common scale across across

multiple variables.

For instance, consider shifts in the two independent variables 𝑊1 and 𝑊2, where

𝑉𝑖 ∼ Bernoulli(𝑝𝑖), with 𝑝1 = 10−4 and 𝑝2 = 0.6. Suppose we wished to consider an

additive shift on the probability scale, e.g., 𝑝′1 = 𝑝1 + 0.1, 𝑝′2 = 𝑝2 + 0.1. Setting aside

the inconvenience that we need to ensure 𝑝′1, 𝑝
′
2 ∈ [0, 1], we argue that these shifts are

not truly of a comparable scale. In particular, this shift in 𝑝1 may seem implausible in

magnitude, while the same shift in 𝑝2 seems more reasonable. On the other hand, an

additive shift in the log-odds captures some aspect of this idea.

Of course, there is some flexibility to incorporate prior expectations of shifts in absolute

probabilities. For instance, in binary variable with no causal parents, we can always

construct a one-to-one map of 𝛿 to a change in the marginal probability. For conditional

shifts, we can similarly construct a one-to-one map between the value of 𝛿 in a shift

𝑠(𝑍; 𝛿) = 𝛿 and the resulting marginal probability of 𝑊𝑖, as formalized below.

Proposition D.2.1. Consider a binary random variable 𝑊 with conditional distribution

P𝛿(𝑊 = 1|𝑍) = 𝜎(𝜂(𝑍) + 𝛿)

for an arbitrary measurable function 𝜂(𝑍) whose range is the extended real numbers

𝜂(𝑍) ∈ R∪{+∞,−∞}. Let 𝑝+ := P(𝜂(𝑍) = +∞), 𝑝− := P(𝜂(𝑍) = −∞), and assume
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that 𝑝+ + 𝑝− < 1. Then, the marginal probability

𝑝𝛿 = P𝛿(𝑊 = 1)

is a strictly monotonically increasing function of 𝛿 ∈ R whose range is (𝑝+, 1− 𝑝−),

Proposition D.2.1 states that, for any achievable marginal probability 𝑝𝛿 = P𝛿(𝑊 = 1),

there exists a unique value of 𝛿 that achieves this probability. Because this relationship

is strictly monotonic, we can hope to efficiently find such a value by e.g., binary search.

In the laboratory testing example of Example 6.1, this would allow us to specify a

plausible strength for the conditional shift 𝛿 in terms of an impact on the overall

testing rate, e.g., modelling a scenario where the testing rate decreases from 20% to

15%.

Similar to the binary case, we can (if desired) directly parameterize shifts in terms

of the conditional mean of a Gaussian distribution, as illustrated in Example D.2.2,

which operates on the scale of 𝜇(𝑍) alone.

Example D.2.2 (Mean shift in a conditional Gaussian). Consider the distribution of a

multi-variate Gaussian variable 𝑊 conditioned on a binary variable 𝑍, where we write

𝑝(𝑤|𝑧) (d)
= 𝒩 (𝑤;𝜇(𝑧),Σ(𝑧))

where 𝒩 (𝑤;𝜇(𝑧),Σ(𝑧)) denotes the Gaussian density with mean 𝜇(𝑧) and covariance

Σ(𝑧). This can be written as an exponential family model with natural parameters

𝜂(𝑍) = [Σ(𝑍)−1𝜇(𝑍),−1
2
Σ(𝑍)−1] and sufficient statistic 𝑇 (𝑊 ) = [𝑊,𝑊𝑊⊤]. Here, a

shift in the mean can be parameterized by 𝑠(𝑍; 𝛿) = [Σ(𝑍)−1𝛿, 0], such that

𝑝𝛿(𝑤|𝑧)
(d)
= 𝒩 (𝑤;𝜇(𝑧) + 𝛿,Σ(𝑧)).

However, shifts of the same magnitude in the conditional mean may not be comparable.
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Suppose that

P(𝑊 |𝑍 = 0)
(d)
= 𝒩 (0, 1) and P(𝑊 |𝑍 = 1)

(d)
= 𝒩 (0, 0.001),

such that 𝛿 = 1 in Example D.2.2 corresponds to

P𝛿=1(𝑊 |𝑍 = 0)
(d)
= 𝒩 (1, 1) and P𝛿=1(𝑊 |𝑍 = 1)

(d)
= 𝒩 (1, 0.001).

While it may seem plausible that the mean of 𝑊 |𝑍 = 0 can increase by 1, it may

seem unrealistic for 𝑊 |𝑍 = 1. Here, it may be more reasonable to consider a different

parameterization of 𝑠(𝑍; 𝛿), where the impact of the shift in a direction is proportional

to the variance in that direction; we discuss this in the next example.

Example D.2.3 (Variance-scaled mean shift in a conditional Gaussian). Consider the

distribution of a multi-variate Gaussian variable 𝑊 conditioned on variables 𝑍, where

we write

𝑝(𝑤|𝑧) (d)
= 𝒩 (𝑤;𝜇(𝑧),Σ(𝑧))

where 𝒩 (𝑤;𝜇(𝑧),Σ(𝑧)) denotes the Gaussian density with mean 𝜇(𝑧) and covariance

Σ(𝑧). This can be written as an exponential family model with natural parameters

𝜂(𝑍) = [Σ(𝑍)−1𝜇(𝑍),−1
2
Σ(𝑍)−1] and sufficient statistic 𝑇 (𝑊 ) = [𝑊,𝑊𝑊⊤]. Here, a

shift in the mean can be parameterized by 𝑠(𝑍; 𝛿) = [𝛿, 0], such that

𝑝𝛿(𝑤|𝑧)
(d)
= 𝒩 (𝑤;𝜇(𝑧) + 𝛿⊤Σ(𝑍),Σ(𝑧)).

In Example D.2.3, the parameter 𝛿 has a different interpretation, as a variance-scaled

mean-shift. If 𝑊 is one-dimensional, we can see that this becomes

𝑝𝛿(𝑤|𝑧)
(d)
= 𝒩 (𝑤;𝜇(𝑧) + 𝛿𝜎2(𝑍), 𝜎2(𝑧)).

As we demonstrate in Appendix D.3.2, this particular example of a parameterization

has other benefits: For instance, for estimation of shift gradients and Hessians at 𝛿 = 0
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𝑋1 𝑌 𝑋2

𝑠(𝑋1, 𝑌 ; 𝛿)

Figure D-1: Illustrative example of an intervention 𝑠(𝑋1, 𝑌 ; 𝛿), and modified causal
graph, which creates a dependence between 𝑋1 and 𝑋2 that bypasses 𝑌 .

can be done without knowledge of Σ(𝑍).

D.2.2 Adding causal edges to the graph

In Section 6.2, we consider the case where the shift function 𝑠(𝑍; 𝛿) alters a conditional

P(𝑊 |𝑍) by a shift function 𝑠(𝑍; 𝛿). We now discuss shift functions that use a larger

set 𝑍 ′. In particular, we consider the setting where 𝑍 represents the parents in a graph

𝒢 (that is, 𝑍 := PA𝒢(𝑊 )), and consider shift functions that correspond to adding

additional parents in that causal graph. Our definitions and results immediately

extend to measuring the impact of shifts that add edges to the graph, in the form of

shift functions that depend on non-descendants of 𝑊 .

Building intuition with a simple example: To build intuition, consider the causal

graph given in Figure D-1. We consider a shift in 𝑋2, with a shift function which

depends not only on the causal parent 𝑌 , but also on 𝑋1. Suppose that the distribution

P(𝑋2|𝑌 ) is a conditional exponential family, given by

P(𝑋2|𝑌 ) = 𝑔(𝑋2) exp(𝜂(𝑌 )⊤𝑇 (𝑋2)− ℎ(𝜂(𝑌 ))).

Using that 𝑋2 ⊥⊥ 𝑋1|𝑌 , we have P(𝑋2|𝑌 ) = P(𝑋2|𝑌,𝑋2), and the joint probability

factorizes as

P(𝑋1, 𝑋2, 𝑌 ) = P(𝑋2|𝑌 )P(𝑌 |𝑋1)P(𝑋1) = P(𝑋2|𝑌,𝑋1)P(𝑌 |𝑋1)P(𝑋1).
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This enables us to consider 𝑍 = (𝑌,𝑋1) as the conditioning set in the context

of Assumption 6.1. This is useful, because it allows us to consider shift functions

that depend on 𝑍, which includes 𝑋1 in addition to 𝑌 . The 𝛿-perturbation of this

conditional distribution under the shift function 𝑠(𝑌,𝑋1; 𝛿) is given by

P𝛿(𝑋2|𝑌,𝑋1) = 𝑔(𝑋2) exp

(︂
{𝜂(𝑌 ) + 𝑠(𝑌,𝑋1; 𝛿)}⊤𝑇 (𝑋2)− ℎ

(︀
𝜂(𝑌 ) + 𝑠(𝑌,𝑋1; 𝛿)

)︀)︂
,

and we can observe that under both graphs, the distribution factorizes in the same

fashion, where

P𝛿(𝑋1, 𝑋2, 𝑌 ) = P𝛿(𝑋2|𝑌,𝑋1)P(𝑌 |𝑋1)P(𝑋1),

keeping the same convention that 𝑠(𝑌,𝑋1; 𝛿 = 0) = 0, such that P0 = P. This is one

example of how our results can be applied with shift functions that effectively add

edges to the causal graph. Of course, not all edges are permitted, so we give a more

general treatment below.

General guidelines for adding edges: Allowing for the use of non-causal parents

in the shift functions is straightforward, and can be done safely as follows, without

violating Assumption 6.1: Given knowledge of the directed acyclic graph 𝒢 which

generates the observed distribution P, we can add edges to the graph, as long as they

do not create cycles.

Formally, let 𝒢 = (V, 𝐸) denote the causal DAG which generates the distribution P,

where V denotes variables and 𝐸 denotes the set of edges, where we denote a directed

edge by 𝑒 = (𝑉𝑖, 𝑉𝑗), going from 𝑉𝑖 to 𝑉𝑗. Let 𝒢 ′ = (V′, 𝐸 ′) denote another DAG (of

our creation) with the constraint that we can only add edges, and that the graph must

remain acyclic, such that 𝐸 ′ ⊇ 𝐸, and V′ = V.

For any variable 𝑊𝑖 ∈ V, this implies that PA𝒢′(𝑊𝑖) ⊇ PA𝒢(𝑊𝑖). Moreover, any new

causal parent 𝑉𝑖 of 𝑊𝑖 in 𝒢 ′ must have been a non-descendant of 𝑊𝑖 in the original

graph, as otherwise the graph 𝒢 ′ would have a cycle from 𝑊𝑖 → 𝑉𝑖 → 𝑊𝑖. For ease of

notation, let 𝑁(𝑊𝑖) := PA𝒢′(𝑊𝑖) ∖ PA𝒢(𝑊𝑖) denote the set of new causal parents of
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𝑊𝑖 in 𝒢 ′. For any variable 𝑊𝑖 such that 𝑁(𝑊𝑖) ̸= ∅, we can write that

𝑊𝑖 ⊥⊥ 𝒢𝑁(𝑊𝑖)|PA𝒢(𝑊𝑖) (D.1)

by the rules of d-separation (Pearl, 2009). As in Assumption 6.1, we use W =

{𝑊1, . . . ,𝑊𝑚} to denote the set of variables to be intervened upon, and accordingly

will assume that in the causal graph 𝒢 ′, we have not added new parents to any other

variables, i.e., 𝑁(𝑉𝑖) = ∅ for any 𝑉𝑖 ⊊ W.

By Equation (D.1), we can write that the distribution P factorizes as

P(V) =

(︃ ∏︁
𝑊𝑖∈W

P(𝑊𝑖|PA𝒢′(𝑊𝑖))

)︃ ∏︁
𝑉𝑖∈V∖W

P(𝑉𝑖|PA𝒢(𝑉𝑖))

because P(𝑊𝑖|PA𝒢′(𝑊𝑖)) = P(𝑊𝑖|PA𝒢(𝑊𝑖), and if P(𝑊𝑖|PA𝒢(𝑊𝑖)) is a conditional

exponential family satisfying Definition 6.2, then P(𝑊𝑖|PA𝒢(𝑊𝑖)) also satisfies this

definition, where the function 𝜂(PA𝒢(𝑊𝑖), 𝑁(𝑊𝑖)) is constant with respect to fluctu-

ation in the variables 𝑁(𝑊𝑖). Thus, taking 𝑍𝑖 := PA𝒢′(𝑊𝑖) as the conditioning set

satisfies Assumption 6.1, and the rest of our results hold, where the corresponding

𝛿-perturbations in Definition 6.4 are given by

P𝛿(V) = (
∏︁

𝑊𝑖∈W

P𝛿𝑖(𝑊𝑖|PA𝒢′(𝑊𝑖)))
∏︁

𝑉𝑖∈V∖W

P(𝑉𝑖|PA𝒢(𝑉𝑖))

with shift function 𝑠𝑖(PA𝒢′(𝑊𝑖); 𝛿𝑖) that are parametric functions of causal parents in

the modified graph 𝒢 ′.

D.2.3 Domain-preserving parameterizations of shift

For both of the examples considered above, we did not need to restrict the magnitude

of the additive change to 𝜂(𝑍). However, in some cases, such as changing the variance

of a conditional Gaussian, we have the restriction that 𝜂𝛿(𝑍) = 𝜂(𝑍) + 𝑠(𝑍; 𝛿) must

lie in the proper domain, e.g., we cannot consider a shift which causes the conditional
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variance to become negative. For a conditional Gaussian, we can consider unrestricted

shifts in 𝜂(𝑍)1, which controls the mean, because the mean has unrestricted domain.

On the other hand, 𝜂(𝑍)2 = (−2𝜎2(𝑍))−1 controls the variance, and must remain

negative, such that 𝜂(𝑍)2 + 𝑠(𝑍; 𝛿)2 < 0 for the shifts we consider.

This can be resolved in one of two ways. First, one can consider parameterizations

of 𝑠(𝑍; 𝛿) which are guaranteed to preserve the correct domain with an additional

constraint on the values of 𝛿, such as the multiplicative shift below, which is sign-

preserving for 𝛿 > −1

𝜂𝛿(𝑍)2 = 𝜂(𝑍)2 + 𝛿𝜂(𝑍)2⏟  ⏞  
𝑠(𝑍;𝛿)

= (1 + 𝛿)𝜂(𝑍)2.

To handle the general case, at the expense of some additional complexity in the

gradients of 𝑠(𝑍; 𝛿), one can define the shifts as follows for parameters 𝜂(𝑍) that have

a lower bound 𝐿, with an equivalent formulation for shifts where the parameters have

an upper bound, for any desired shift function 𝑠′(𝑍; 𝛿)

𝜂(𝑍) + 𝑠′(𝑍; 𝛿) · sigmoid(𝛾 · [(𝜂(𝑍) + 𝑠′(𝑍; 𝛿))− (𝐿+ 𝜖)])⏟  ⏞  
𝑠(𝑍;𝛿)

where sigmoid(𝛾 · (𝑥 − (𝐿 + 𝜖))) is a smooth relaxation of the indicator function

1 {𝑥 > 𝐿+ 𝜖}, for a sufficiently large temperature parameter 𝛾 > 0 and a small 𝜖 > 0.

This transformation preserves the twice-differentiable nature of 𝑠(𝑍; 𝛿). In practice,

however, we typically evaluate the gradient of 𝑠(𝑍; 𝛿) at 𝛿 = 0, where 𝜂(𝑍) does not

lie at the boundary of allowable parameter space, such that we can consider simpler

parameterizations like

𝜂(𝑍) + 𝑠′(𝑍; 𝛿) · 1 {𝜂(𝑍) + 𝑠′(𝑍; 𝛿) > 𝐿+ 𝜖}⏟  ⏞  
𝑠(𝑍;𝛿)

as long as 𝜖 is taken sufficient small such that 𝜂(𝑍) > 𝐿+ 𝜖 almost everywhere in P.
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D.3 Considerations and additional results for evaluation

of the worst-case loss

In this section, we present additional results on the Taylor approximation and compare

how the Taylor approximation compares to the reweighting approach in evaluation

and worst-case optimization of the shifted loss.

• In Appendix D.3.1 we give a full treatment of how shift gradients and Hessians

are estimated from samples, following Theorem 6.1.

• In Appendix D.3.2, we demonstrate in some cases, one does not need to estimate

all of 𝜂(𝑍), but only the parts of 𝜂(𝑍) that is shifting.

• In Appendix D.3.3, we demonstrate that the second-order Taylor expansion is

exact in a linear-Gaussian setting, which gives a conceptual connection between

this work and that of Anchor Regression (Rothenhäusler et al., 2021), which

considered a restricted type of additive shift intervention in a globally linear

structural causal model.

• In Appendix D.3.4, we work out the expression for the shift gradient and Hessian

when we condition on binary variables.

• In Appendices D.3.5 to D.3.7, we provide experiments that compare the variance

of the importance sampling estimate �̂�𝛿,IS (see Equation (6.6)) to the variance

of the Taylor estimate �̂�𝛿,Taylor (see Equation (6.7)) of the loss in a shifted

distribution.

• In Appendix D.3.8, we consider the bound in Theorem 6.2 in a covariate shift

setting, and give an explicit expression for this under additional assumptions.
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D.3.1 Algorithm for Estimation of Shift Gradients and Hessians

Here, we recall the form of the shift gradients and Hessians in Theorem 6.1, and

demonstrate how to compute them in practice using a set of auxiliary regression

functions fit to the validation data.

Theorem 6.1 (Shift gradients and Hessians as covariances). Assume that P𝛿,P sat-

isfy Definition 6.4, with intervened variables W = {𝑊1, . . . ,𝑊𝑚} and shift func-

tions 𝑠𝑖(𝑍𝑖; 𝛿𝑖), where 𝛿 = (𝛿1, . . . , 𝛿𝑚). Then the shift gradient is given by SG1 =

(SG1
1, . . . , SG

1
𝑚) ∈ R𝑑𝛿 where

SG1
𝑖 = E

[︂
𝐷⊤

𝑖,1Cov

(︂
ℓ, 𝑇𝑖(𝑊𝑖)

⃒⃒⃒⃒
𝑍𝑖

)︂]︂
,

and the shift Hessian is a matrix of size (𝑑𝛿 × 𝑑𝛿), where the (𝑖, 𝑗)th block of size

𝑑𝛿𝑖 × 𝑑𝛿𝑗 equals

{SG2}𝑖,𝑗 =

⎧⎪⎨⎪⎩E
[︁
𝐷⊤

𝑖,1Cov
(︁
ℓ, 𝜖𝑇𝑖|𝑍𝑖

𝜖⊤𝑇𝑖|𝑍𝑖
|𝑍𝑖

)︁
𝐷𝑖,1

]︁
− E

[︀
ℓ ·𝐷⊤

𝑖,2𝜖𝑇 |𝑍
]︀

𝑖 = 𝑗

Cov(ℓ, 𝐷⊤
𝑖,1𝜖𝑇𝑖|𝑍𝑖

𝜖⊤𝑇𝑗 |𝑍𝑗
𝐷𝑗,1) 𝑖 ̸= 𝑗,

where 𝐷𝑖,𝑘 := ∇𝑘
𝛿𝑖
𝑠𝑖(𝑍𝑖; 𝛿𝑖)|𝛿=0, is the gradient of the shift function for 𝑘 = 1, and

the Hessian for 𝑘 = 2. Here, 𝑇𝑖(𝑊𝑖) is the sufficient statistic of P(𝑊𝑖|𝑍𝑖) and

𝜖𝑇𝑖|𝑍𝑖
:= 𝑇𝑖(𝑊𝑖)− E[𝑇 (𝑊𝑖)|𝑍𝑖].

Notation and Dimensions: Let W = {𝑊1, . . . ,𝑊𝑚} denote the set of 𝑚 intervened

variables, and let Z = {𝑍1, . . . , 𝑍𝑚} denote the conditioning sets. Note that for a single

𝑊𝑖 ∈ R𝑑𝑊𝑖 , we will generally have it that 𝑍𝑖 ∈ R𝑑𝑍 , where 𝑑𝑊 is the dimension of 𝑊

(typically 1) and 𝑑𝑍 is the number of conditioning variables, and when considering 𝑛

samples, 𝑊𝑖 will be a matrix in R𝑛×𝑑𝑊 , and 𝑍𝑖 will be a matrix R𝑛×𝑑𝑍 . The sufficient

statistic 𝑇𝑖(𝑊𝑖) maps from R𝑑𝑊 to R𝑑𝑇 , where 𝑑𝑇 is the dimension of the sufficient

statistic. For many common distributions, 𝑇𝑖(𝑊𝑖) = 𝑊𝑖, the identity function. For

others, like the conditional multi-variate Gaussian, 𝑇𝑖(𝑊𝑖) = [𝑊𝑖,𝑊𝑖𝑊
⊤
𝑖 ], where

𝑊 ∈ R𝑑𝑊 and 𝑊𝑖𝑊
⊤
𝑖 ∈ R𝑑𝑊×𝑑𝑊 . In these cases, we squeeze 𝑇𝑖(𝑊𝑖) to be a single
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vector, so in this case 𝑑𝑇 = 𝑑𝑊 + 𝑑2𝑊 .

Auxiliary models: To estimate the shift gradients and Hessians, we first learn aux-

iliary predictive models, which are required for computing the relevant conditional

covariances. For simplicity, we do not consider sample-splitting in the algorithm given

below, but one could employ sample-splitting to learn these predictive models on an

independent validation sample.

• For each 𝑊𝑖, we learn �̂�𝑊𝑖
(𝑍𝑖) as a regression model for E[𝑇𝑖(𝑊𝑖)|𝑍𝑖]. Because

𝑇𝑖(𝑊𝑖) may have multiple dimensions, this is a function from R𝑑𝑍 to R𝑑𝑇 .

• For each conditioning set 𝑍𝑖, we learn �̂�ℓ(𝑍𝑖) as a regression model for E[ℓ|𝑍𝑖].

Because the loss is one-dimensional, this is a function from R𝑑𝑍 to R.

We then construct the following, which are defined for each data point in the sample.

• For each 𝑊𝑖, we construct �̂�𝑇𝑖|𝑍𝑖
:= 𝑇𝑖(𝑊𝑖)− �̂�𝑊𝑖

(𝑍𝑖), which is a vector of length

𝑑𝑇𝑖
.

• For each conditioning set 𝑍𝑖, for the loss ℓ, we construct �̂�ℓ|𝑍𝑖
:= ℓ− �̂�ℓ(𝑍𝑖), which

is a real number.

• For each conditioning set 𝑍𝑖, we compute 𝐷𝑖,1(𝑍𝑖) as ∇𝛿𝑖𝑠𝑖(𝑍𝑖; 𝛿𝑖)
⃒⃒
𝛿=0

, which is

a matrix of size 𝑑𝑇 × 𝑑𝛿𝑖 , and a function of 𝑍𝑖 that we can evaluate on each

sample.

• For each conditioning set 𝑍𝑖, we compute 𝐷𝑖,2(𝑍𝑖) as ∇2
𝛿𝑖
𝑠𝑖(𝑍𝑖; 𝛿𝑖)

⃒⃒
𝛿=0

, which is

a tensor of size 𝑑𝑇 × 𝑑𝛿𝑖 × 𝑑𝛿𝑖 , and a function of 𝑍𝑖 that we can evaluate on each

sample.

Estimating shift gradients The shift gradient and Hessian in Theorem 6.1 are expressed

as conditional covariance. Since E[Cov(𝐴,𝐵|𝐶)] = E[𝜖𝐴|𝐶𝜖𝐵|𝐶 ] where 𝜖𝐴|𝐶 := 𝐴 −

E[𝐴|𝐶] and 𝜖𝐵|𝐶 := 𝐵 − E[𝐵|𝐶], we can use the estimated conditional means above,
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to compute the shift gradient and Hessian. Suppose that we observe 𝑁 samples,

𝑛 ∈ {1, . . . , 𝑁}. For each index 𝑖 ∈ [𝑚] := {1, . . . ,𝑚},

SĜ
1

𝑖 =
1

𝑁

𝑁∑︁
𝑛=1

�̂�
(𝑛)
ℓ|𝑍𝑖
·𝐷𝑖,1(𝑍

(𝑛)
𝑖 )

⊤
�̂�
(𝑛)
𝑇𝑖|𝑍𝑖

which yields a vector of length 𝑑𝛿𝑖 , and these are concatenated together for each 𝑖 to

yield the entire shift gradient. The shift Hessian is constructed block-wise, for each

index 𝑖, 𝑗 ∈ [𝑚]× [𝑚] as follows: If 𝑖 = 𝑗, then we construct the corresponding 𝑑𝛿𝑖 × 𝑑𝛿𝑖

block as

SĜ
2

𝑖,𝑖 =
1

𝑁

𝑁∑︁
𝑛=1

�̂�
(𝑛)
ℓ|𝑍𝑖
·
[︂(︁

𝐷𝑖,1(𝑍
(𝑛)
𝑖 )

⊤
�̂�
(𝑛)
𝑇𝑖|𝑍𝑖

)︁⊗2

−𝐷𝑖,2(𝑍
(𝑛)
𝑖 )⊤�̂�𝑇𝑖|𝑍𝑖

]︂

where 𝑣⊗2 denotes the outer product so that 𝑣⊗2 = 𝑣𝑣⊤, and the transpose of 𝐷𝑖,2

refers to a transpose which has dimension 𝑑𝛿𝑖 × 𝑑𝛿𝑖 × 𝑑𝑇 . On the other hand, if 𝑖 ̸= 𝑗

we have

SĜ
2

𝑖,𝑗 =
1

𝑁

𝑁∑︁
𝑛=1

(ℓ(𝑛) − ℓ̄) ·
(︁
𝐷𝑖,1(𝑍

(𝑛)
𝑖 )⊤�̂�

(𝑛)
𝑇𝑖|𝑍𝑖

)︁(︁
𝐷𝑗,1(𝑍

(𝑛)
𝑗 )⊤�̂�

(𝑛)
𝑇𝑗 |𝑍𝑗

)︁⊤
where ℓ̄ is the average value of ℓ in the validation sample.

D.3.2 Shifts where estimating all of 𝜂(𝑍) is not necessary for esti-

mating shift gradient and Hessian

The following example shows that when a shift occurs in an exponential conditional

distribution with parameter 𝜂(𝑍), we do not necessarily need to model all of 𝜂(𝑍) in

order to compute the shift gradient and Hessian. In particular, we only need to model

the parts of 𝜂(𝑍) that shift. This is different from estimating the shifted loss using

importance sampling, where 𝜂(𝑍) needs to be evaluated to evaluate Equation (6.5).

Example D.3.1. Consider the distribution of 𝑊 conditioned on variables 𝑍 that is a
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multi-variate Gaussian variable,

𝑊 |𝑍 = 𝒩 (𝜇(𝑍),Σ(𝑍)),

for unknown functions 𝜇,Σ. The sufficient statistic for the multivariate Gaus-

sian distribution is 𝑇 (𝑊 ) = (𝑊,𝑊𝑊⊤) and the canonical parameter is 𝜂(𝑍) =

(Σ(𝑍)−1𝜇(𝑍),−1
2
Σ(𝑍)−1).1 The first component of 𝜂(𝑍) is a signal-to-variance ratio

and the second is the inverse covariance matrix. For a shift (𝛿, 0) that only affects the

first component, we show that we do not need to model Σ(𝑍), but only 𝜇(𝑍). This

is beneficial, since estimating a conditional covariance from data can be challenging,

especially if 𝑊 is high-dimensional.

For 𝛿 ∈ R𝑑𝑊 , let 𝑠(𝑍; 𝛿) = (𝛿, 0)⊤, and suppose that we wish to estimate E𝛿[ℓ] using

Equation (6.7). The derivative of 𝑠 is given by

𝐷1 = ∇2
𝛿𝑠(𝑍; 𝛿) =

⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where the first block is a 𝑑𝑊 × 𝑑𝑊 diagonal matrix, and the second is a 𝑑𝑊 × 𝑑2𝑊

matrix of zeros. The second derivative of 𝑠 is 𝐷2 = 0. Hence, using Theorem 6.1, the

shift gradient is

SG1 = E[𝐷1Cov(ℓ, (𝑊,𝑊𝑊⊤)|𝑍)] = E[Cov(ℓ,𝑊 |𝑍)],

and

SG2 = E
[︂
𝐷1Cov(ℓ,

(︂
𝑊 − E[𝑊 |𝑍],𝑊𝑊⊤ − E[𝑊𝑊⊤|𝑍]⊗2

)︂
|𝑍)𝐷⊤

1

]︂
1Or, more formally, 𝑇 (𝑊 ) =

(︀
𝑊, vec(𝑊𝑊⊤)

)︀
and 𝜂(𝑍) =

(︀
𝜎(𝑍)−1𝜇(𝑍),− 1

2 vec(𝜇(𝑍))
)︀
, where

vec denotes the vectorization operation. For a detailed walk through of the exponential family pa-
rameterization of multivariate Gaussian distributions, see https://maurocamaraescudero.netlify.
app/post/multivariate-normal-as-an-exponential-family-distribution/.
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Figure D-2: (Left) Graphical model assumed by Equation (D.2). The undirected
edges represent either any directed configuration of directed edges or the dependence
structures arising due to an acyclic SCM (Bongers et al., 2021). (Middle) Plotting
E𝛿[(𝑌 − 𝛾⊤𝑋)2] as a function of 𝛿 ∈ R2 for a fixed predictor 𝛾. (Right) Plotting
E𝛿[(𝑌 − 𝛾⊤𝑋)2] as a function of 𝛿 ∈ R3, with the loss indicated by the color. The loss
only varies with changes in 𝛿2 (corresponding in Lemma D.3.1 to 𝑣𝛾 ∝ (0, 1, 0)⊤).

= E
[︁
Cov(ℓ,

(︀
𝑊 − E[𝑊 |𝑍]

)︀⊗2|𝑍)
]︁
.

Conditional covariances can be computed by only residualizing one of the variables:

E[Cov(𝐴,𝐵|𝐶)] = E[𝐴(𝐵 − E[𝐵|𝐶])]. Thus, if we only residualize ℓ, we get

SG1 = E[(ℓ− E[ℓ|𝑍])𝑊 ] and SG2 = E[(ℓ− E[ℓ|𝑍]) · (𝑊 − 𝜇(𝑍))⊗2].

Therefore, given data from P, we can estimate the shift gradients by plugging in

estimators �̂�(𝑍) of E[𝑊 |𝑍] and �̂�(𝑍) of E[ℓ|𝑍]. It follows that we do not need to

model Σ(𝑍) in order to estimate the shift gradients and Hessian at 𝛿 = 0.

The story is different for a reweighting based estimator that seeks to estimate E𝛿[ℓ]

using importance sampling (see Section 6.3.1), where the weights are given by

𝑤𝜂,𝛿(𝑍) = (𝑊 − 𝜇(𝑍))⊤𝛿 − 1
2
𝛿⊤Σ(𝑍)𝛿,

and hence estimating 𝑤𝜂,𝛿(𝑍) requires estimation of Σ(𝑍).
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D.3.3 The quadratic approximation is exact, for mean shifts in linear

models

We now consider data generated by a linear model, and show that the shifted loss is a

quadratic function of 𝛿, meaning that the Taylor approximation 𝐸𝛿,Taylor is globally

exact. Suppose that data is sampled from a linear structural causal model, and a shift

in mean occurs in an variable 𝐴 that does not have any causal parents. In particular,

let 𝐴 have a normal distribution with mean 𝜇 and finite variance and let⎛⎜⎜⎜⎝
𝑋

𝑌

𝐻

⎞⎟⎟⎟⎠ = 𝐵

⎛⎜⎜⎜⎝
𝑋

𝑌

𝐻

⎞⎟⎟⎟⎠+𝑀𝐴+ 𝜖. (D.2)

This is the model assumed by Rothenhäusler et al. (2021), and the corresponding

graphical model is shown in Figure D-2 (left). We consider the linear predictor

𝑓𝛾(𝑋) = 𝛾⊤𝑋 and the mean squared loss ℓ(𝑓𝛾(𝑋), 𝑌 ) = (𝑌 − 𝑓(𝑋))2. Due to the

linearity of the model, the loss under a mean shift in 𝐴 is quadratic (Rothenhäusler

et al., 2021).

Lemma D.3.1. Suppose 𝐴 ∼ 𝒩 (𝜇,Σ) and that (𝑋,𝑌,𝐻) are generated according to

Equation (D.2). For 𝛾 ∈ R𝑑𝑋 define ℓ := (𝑌 − 𝛾⊤𝑋)2. Then there exist 𝑣𝛾 , 𝑢𝜇,𝛾 ∈ R𝑑𝐴

such that for all shifts 𝛿 ∈ R𝑑𝐴:

E𝛿[ℓ] = E[ℓ] + 𝛿⊤𝑢𝜇,𝛾 +
1
2
𝛿⊤𝑣𝛾𝑣

⊤
𝛾 𝛿,

where E𝛿 corresponds to taking the mean in the distribution where 𝐴 ∼ 𝒩 (𝜇+ 𝛿,Σ).

Further 𝑢𝜇,𝛾 = 0 if 𝜇 = 0.

Proposition D.3.1 elicits two properties of this linear model: First the loss is described

by a quadratic function globally, i.e. also for very large 𝛿. In Figure D-2 (middle), we

plot E𝛿[ℓ] as a function of 𝛿. We observe a ‘valley’ in the loss, in which the expected loss

does not at all change with 𝛿. This is a consequence of Lemma D.3.1, and particularly
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that if 𝛿 is orthogonal to both 𝑢𝜇,𝛾 and 𝑣𝛾 then E𝛿[ℓ] = E[ℓ]. In higher dimensions

𝑑𝐴 > 2, since 𝑣𝛾𝑣
⊤
𝛾 has rank 1, the ‘valley’ persists in that the loss does not grow at

all in 𝑑𝐴 − 2 dimensions (or 𝑑𝐴 − 1 if 𝐴 has mean 𝜇 = 0), see Figure D-2 (right).

We now show that coefficients in the quadratic form in Lemma D.3.1 is equal to the

shift gradient and Hessian. We use that the Gaussian distribution with known variance

Σ can be parameterized as an exponential family with sufficient statistic 𝑇 (𝐴) = Σ−1𝐴

and parameter 𝜂 = 𝜇.2

Proposition D.3.1. Suppose 𝐴 ∼ 𝒩 (𝜇,Σ) and that (𝑋, 𝑌,𝐻) are generated according

to Equation (D.2). Then the shift gradient and Hessian are given by

SG1 = Cov(ℓ,Σ−1𝐴) and SG2 = Cov(ℓ,Σ−1(𝐴− 𝜇)(𝐴− 𝜇)⊤Σ−⊤)

and the loss under a mean shift of 𝛿 in 𝐴 is given by

E𝛿[ℓ] = E[ℓ] + 𝛿⊤ SG1+1
2
𝛿⊤ SG2 𝛿,

where ℓ := (𝑌 − 𝛾⊤𝑋)2 and E𝛿 corresponds to taking the mean in the distribution

where 𝐴 ∼ 𝒩 (𝜇+ 𝛿,Σ).

This elicits a connection to anchor regression (Rothenhäusler et al., 2021): Under

the generative model Equation (D.2) and using the quadratic loss ℓ = (𝑌 − 𝛾⊤𝑋)2

for 𝛾 ∈ R𝑑𝑋 , they show that for any 𝜆 ≥ 0, the worst-case loss E𝛿[ℓ] over a set

Δ = {𝛿|𝛿𝛿⊤ ⪯ 𝜆E[𝐴𝐴⊤]} equals the objective ℓAR = E[ℓ] + 𝜆E[E[𝑌 − 𝛾⊤𝑋|𝐴]2], which

is computable from the observed distribution.

Because of Proposition D.3.1, ℓAR also equals the solution of the optimization problem

Equation (6.9) over the constraint set Δ. Therefore minimizing the anchor regression

objective over 𝛾 or minimizing Equation (6.9) over 𝛾 will lead to the same estimator.

Since our proposed Taylor approximation in Equation (6.9) does not assume linearity,

one could use the approximation to extend the rationale of anchor regression of

2It can also be parameterized as 𝑇 (𝐴) = Σ−1/2𝐴, 𝜂 = Σ−1/2𝜇, which would yield the same result.
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minimizing the worst-case loss to non-linear models. This however comes at the

cost of not optimizing the exact worst-case loss, but rather an approximation, whose

quality is given by Theorem 6.2. Further, this would involving a minimax problem,

minimizing Equation (6.9) over models 𝑓 , and there are questions, such as convexity

and tractability, which would need to be solved.

D.3.4 Estimating the shift gradient and Hessian for conditional on

binary variables

To build intuition for the shift gradient and Hessian, we here give an example where

we condition on variables 𝑍 that take a finite number of values and write out explicit

expressions for the shift gradient and Hessian. However, we emphasize, that in most

practical scenarios, one will not have to work out the shift gradient and Hessian

explicitly, but can simply estimate them as covariances from the data (Theorem 6.1).

Example D.3.2 (Shift Function of Discrete Parents). Consider a conditional distribution

𝑊 |𝑍 where 𝑍 takes values in a finite set 𝒵. This is for instance the case if 𝑍 =

(𝑍1, . . . , 𝑍𝑑) where each 𝑍𝑖 is binary, so |𝒵| = 2𝑑. Instead of a shift 𝜂(𝑍)+ 𝛿, where the

parameter increases by the same amount for all values of 𝑍, we may consider a shift

𝜂(𝑍)+ 𝑠(𝑍; 𝛿) where 𝑠(𝑍; 𝛿) =
∑︀

𝑧∈𝒵 𝛿𝑧1𝑍=𝑧, meaning that the shift is different in each

category 𝑍. Since 𝜂(𝑍) only takes a finite number of variables, this shift corresponds

to an arbitrary change in 𝜂(𝑍).

𝑠(𝑍; 𝛿) is a differentiable function in 𝛿, and if 𝑑𝑇 = 1 the shift gradient is a (1× 2𝑑)-

row vector, ∇𝛿𝑠(𝑍; 𝛿) = (1𝑍=𝑧)𝑧∈𝒵 , and the shift Hessian vanishes, ∇2
𝛿𝑠(𝑍; 𝛿) = 0.

Enumerating 𝒵 = {1, . . . , 2𝑑}, the 𝑖’th entry in the shift gradient becomes

(SG1)𝑖 = E
[︂
1𝑍=𝑖Cov

(︂
ℓ, 𝑇 (𝑊 )

⃒⃒⃒⃒
𝑍

)︂]︂
= P(𝑍 = 𝑖)Cov(ℓ, 𝑇 (𝑊 )|𝑍 = 𝑖),

and the 𝑖, 𝑗’th entry of the shift Hessian becomes 0 if 𝑗 ̸= 𝑖 and else

(SG2)𝑖,𝑖 = E
[︂
1𝑍=𝑖Cov𝛿

(︂
ℓ, 𝜖⊗2

𝑇 |𝑍

⃒⃒⃒⃒
𝑍

)︂]︂
= P(𝑍 = 𝑖)Cov(ℓ, 𝜖⊗2

𝑇 |𝑍 |𝑍 = 𝑖).
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Consider for example the case where both 𝑊 and 𝑍 are binary. Then 𝑇 (𝑊 ) = 𝑊

and 𝑠(𝑍; 𝛿) = 1𝑍=0𝛿0 + 1𝑍=1𝛿1 and 𝑠(1) = (1𝑍=0, 1𝑍=1) and 𝑠(2) = 0. The con-

ditional covariance can be evaluated by residualizing only one of the variables,

E[Cov(𝐴,𝐵|𝐶)] = E[𝐴(𝐵 − E[𝐵|𝐶])], so we can chose to residualize only 𝑊 (for

SG1) or (𝑊 −E[𝑊 |𝑍 = 𝑖])2 (for SG2). Finally, if we let 𝑝𝑖 = P(𝑊 = 1|𝑍 = 𝑖) and use

that E[𝑊 |𝑍 = 𝑖] = 𝑝𝑖 and E[(𝑊 − 𝑝𝑖)
2|𝑍 = 𝑖] = Var(𝑊 |𝑍 = 𝑖) = 𝑝𝑖(1− 𝑝𝑖), we get

that

SG1 = E

⎡⎣⎛⎝𝑝0 · ℓ · (𝑊 − 𝑝0)

𝑝1 · ℓ · (𝑊 − 𝑝1)

⎞⎠⎤⎦ ,

and

SG2 = E

⎡⎣⎛⎝ℓ𝑝0
{︀
(𝑊 − 𝑝0)

2 − 𝑝0(1− 𝑝0)
}︀

0

0 ℓ𝑝1
{︀
(𝑊 − 𝑝1)

2 − 𝑝1(1− 𝑝1)
}︀
⎞⎠⎤⎦ .

D.3.5 Comparison of variance of reweighting and Taylor estimates

in the lab ordering example

To compare the bias and variance of the Taylor and the importance sampling estimates

of the shifted loss, we simulate data from the following, artificial, generative model

(which is the same generative model that was used to construct the loss landscape

in Figure 6-1b).

Age ∼ 𝒩 (0, 0.52)

P(Disease = 1|Age) = sigmoid(0.5 · Age− 1)

P(Order = 1|Disease, Age) = sigmoid(2 ·Disease + 0.5 · Age− 1)

Test Result|Order = 1,Disease ∼ 𝒩 (−0.5 + Disease, 1)

where if Order = 0, the test result is a placeholder value of zero.

We consider either a shift in the logits of ordering lab tests 𝜂𝛿(𝑍) = 𝜂(𝑍)+𝛿 (Figure D-
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Figure D-3: We plot the mean and confidence intervals of �̂�𝛿,Taylor and �̂�𝛿,IS when
the shifted loss as in the lab test ordering example Example 6.1. (Left) We consider a
shift in the logits of ordering lab tests from 𝜂(𝑍) to 𝜂(𝑍) + 𝛿0. (Right) We consider a
shift in the mean of Age. In the observed distribution 𝜂 = 𝜇/𝜎 = 0 and we shift to a
mean of 𝜂 = 𝛿.

3 left) or a mean shift in the Gaussian distribution of age 𝜂𝛿 = 𝛿 (Figure D-3 right).

For each 𝛿 in a grid, we compute estimates �̂�𝛿,IS and �̂�𝛿,Taylor of the loss under a

shift of size 𝛿, We repeat this 𝑛 = 1,000 times, and plot the mean and point-wise

prediction intervals (the pointwise 0.05 and 0.95 quantiles) for �̂�𝛿,IS and �̂�𝛿,Taylor. We

also simulate ground truth data from P𝛿, to compute the actual loss under shift.

For shifts in the binary variable (Figure D-3, left), both estimates capture the loss well

for small shifts, but as 𝛿 gets larger, the quadratic approximation increasingly deviates

from the true mean; the importance sampling estimate remains very close to the

ground truth shifted loss. On the contrary, for the Gaussian mean shift (Figure D-3,

right), the importance sampling weights are ill-behaved, and the variance dramatically

increases as 𝛿 becomes larger. This supports the intuition, that while importance

sampling tends to work well for binary variables, the variance can be large in continuous

distributions, such as the Gaussian distribution.
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D.3.6 Comparison of theoretical variance of reweighting and Taylor

estimates

Example D.3.3. To demonstrate the reduction in variance obtained from using the

Taylor approximation of the importance weights, we consider a simple example

where P(𝑋) ∼ 𝒩 (0, 1) and P𝛿(𝑋) ∼ 𝒩 (𝛿, 1) and we wish to estimate E𝛿[ℓ(𝑋)]

for some loss function ℓ(𝑋).3 The importance sampling weights are given by 𝑤𝛿(𝑋) =

exp(−1
2
𝛿2 + 𝑋 · 𝛿), and the shift gradient and Hessians are SG1 = E[ℓ(𝑋)𝑋] and

SG2 = E[ℓ(𝑋)𝑋2].

Therefore samples 𝑋1, . . . , 𝑋𝑛 from P consider the estimators, for any loss function

ℓ(𝑋), two estimators of E𝛿[ℓ] are

�̂�IS =
1

𝑛

𝑛∑︁
𝑖=1

𝑤𝛿(𝑋𝑖)ℓ(𝑋𝑖) and �̂�Taylor =
1

𝑛

𝑛∑︁
𝑖=1

ℓ(𝑋𝑖) + 𝛿 · ℓ(𝑋𝑖)𝑋𝑖 +
1
2
𝛿2ℓ(𝑋𝑖)𝑋

2
𝑖 ,

and the variances of the estimators are

Var(�̂�IS) =
E[{ℓ(𝑋 + 2𝛿)}2]

𝑛
exp(𝛿2)

Var(�̂�Taylor) =
Var

(︀
ℓ(𝑋) + 𝛿𝑋ℓ(𝑋) + 1

2
𝛿2𝑋2ℓ(𝑋)

)︀
𝑛

.

The variance of �̂�Taylor grows like 𝛿4 and the variance of �̂�IS grows exponentially fast

(unless E[{ℓ(𝑋 + 2𝛿)}2] also diminishes exponentially fast, which is generally not the

case), and so except for small 𝛿, the variance of the importance sampling estimator

will be orders of magnitude larger than the variance of the estimator using the Taylor

approximation. While, �̂�IS is an unbiased estimator of E𝛿[ℓ(𝑋)] and �̂�Taylor is a biased,

the overall mean squared error will be smaller for the Taylor approximation, unless

the bias of the Taylor approximation also grows exponentially.

For the sake of analysis, consider the simple example ℓ(𝑋) = 𝑋. In this case, the

Taylor estimate is unbiased because E𝛿[𝑋] = 𝛿 is a linear function of 𝛿, so the quadratic

3In practice one would not use importance sampling estimation for such a simple shift, but use
other approaches, such as analytically work out an estimate of E𝛿[ℓ].
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Figure D-4: Median and quantiles of the error in predicting E𝛿[ℓ] under a shift 𝛿.

approximation is adequate. Further, the variances are given by

Var(�̂�IS) =
exp(𝛿2)(1 + 4𝛿2)− 𝛿2

𝑛
and Var(�̂�Taylor) =

1 + 5𝛿2 + 15
4
𝛿4

𝑛
.

In particular, the variance of the importance sampling estimate grows like exp(𝛿2)

while that of the Taylor estimate grows like 𝛿4.

D.3.7 Comparison of variance of reweighting and Taylor estimates

in a simple synthetic example

In this experiment, we compare the variance of importance sampling and Taylor

estimates in a simple synthetic example. We simulate data from P where 𝑋 ∈ R3 and

𝑌 ∈ R1 depend either linearly or quadratically on 𝑊 ∈ R3,

𝑊 ∼ 𝒩 (0, Id3) and

⎛⎝𝑋

𝑌

⎞⎠ = (Id4−𝐵)−1𝑀(𝑊 + 𝛼(𝑊 ⊙𝑊 ) + 𝜖),
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where ⊙ refers to entrywise multiplication, 𝜖 ∼ 𝒩 (0, Id4), 𝛼 is either 0 (linear) or 1
2

(nonlinear) and

𝐵 :=

⎛⎜⎜⎜⎜⎜⎜⎝
2 1 0 1

2 2 0 3

3 3 0 2

4 2 4 0

⎞⎟⎟⎟⎟⎟⎟⎠ and 𝑀 :=

⎛⎜⎜⎜⎜⎜⎜⎝
2 1 0

2 1 1

2 2 0

4 1 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

On the simulated data from P, we then fit a linear predictor 𝑓(𝑋) of 𝑌 , and consider

a shift in the mean of 𝑊 from P(𝑊 ) ∼ 𝒩 (0, Id3) to P𝛿(𝑊 ) ∼ 𝒩 (𝛿, Id3), where

𝛿 = [𝑠, 𝑠, 𝑠]⊤ for some shift strength 𝑠 > 0. We then compute the shift gradient

SG1 = Cov(ℓ,𝑊 ) and Hessian SG2 = Cov(ℓ,𝑊𝑊⊤), and approximate E𝛿[ℓ] by

�̂�𝛿,Taylor (see Equation (6.7)). In the linear data, the Taylor approximation is exact

(see Appendix D.3.3), such that any prediction error can be attributed to finite-

sample fluctuation, whereas both model misspecification and finite-sample fluctuation

contribute to the error in the nonlinear setting.

Similarly, we estimate E𝛿[ℓ] by importance sampling, E𝛿[ℓ] = E[𝑤𝛿(𝑊 )ℓ] ≈ 1
𝑛

∑︀
𝑤𝛿(𝑊 )ℓ,

where 𝑤𝛿(𝑊 ) = P𝛿(𝑊 )
P(𝑊 )

= 𝛿⊤𝑊 − 1
2
𝛿⊤𝛿, and compare this to ground truth data sampled

from P𝛿; we do the same for an importance sampling estimator with weights ‘clipped’

at the 99% quantile.

We compare the predicted loss E𝛿[ℓ] by actually simulating data from P𝛿 and evaluating

E𝛿[ℓ] (where ℓ is still the model trained on data from P). We then compute the

prediction error, as the difference E𝛿[ℓ]− �̂�𝛿,Taylor or E𝛿[ℓ]− �̂�𝛿,IS.

For a number of different shift strengths 𝑠, we repeat this procedure 𝑀 = 1,000 times,

and in Figure D-4 we plot the median and a confidence interval defined by the 2.5

and the 97.5% quantiles of the prediction error.

In the linear case, both the importance sampling and the Taylor approximation retains

a median error close to 0, with the variance of �̂�𝛿,IS being larger than �̂�𝛿,Taylor. The

clipped importance sampling estimate has a smaller variance than that of ordinary
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importance sampling, though the median deviates further from 0, and the variance is

not smaller than that of the Taylor estimate.

In the non-linear cases, all three models underestimate the shifted loss. For �̂�𝛿,Taylor,

this happens because as the mean of 𝑊 shift, the mean shift is amplified by the

non-linearity, such that the quadratic approximation of the loss is an underestimate.

While the variance of the clipped importance sampling is smaller than the variance

of the ordinary importance sampling estimate and comparable to the variance of the

Taylor estimate, this prediction is further from 0 than the Taylor estimate.

Since importance sampling methods are known to produce very large outliers, the use

of the median and quantiles, as opposed to the mean an confidence intervals based on

the standard deviation, is favouring importance sampling; the Taylor method looks

even more favourable if we instead plot the mean and standard deviations.

D.3.8 The bound in Theorem 6.2 under covariate shift

The bound in Theorem 6.2 is in a general form that applies to any shift in the CEF

framework. In concrete cases, the bound can be made simpler, as we now demonstrate.

Suppose that 𝑋 is a covariate that is Gaussian distributed 𝒩 (0, 1). Also consider

a prediction target 𝑌 := 𝑓0(𝑋) + 𝜖 for some function 𝑓0 and noise variable 𝜖 that is

independent of 𝑋.

Suppose we consider a predictor 𝑌 = 𝑓(𝑋) and apply our proposed methodology to

estimate the mean squared prediction error when predicting 𝑌 ≈ 𝑓(𝑋) under a mean

shift of size 𝛿 ∈ R to 𝑋. When we only consider shifts in the mean (and not the

variance), the sufficient statistic is 𝑇 (𝑋) = 𝑋. We can use Theorem 6.2 to bound the

prediction error. In this setting,

ℓ = (𝑌 − 𝑌 )2 = (𝑓0(𝑋)− 𝑓(𝑋) + 𝜖)2 and 𝜖𝑡·𝛿𝑇 = 𝑋 − 𝑡 · 𝛿,
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such that the bound in Theorem 6.2 becomes⃒⃒⃒⃒
E𝛿[ℓ]− 𝐸𝛿,Taylor

⃒⃒⃒⃒
≤ 1

2
sup
𝑡∈[0,1]

⃒⃒⃒⃒
Cov𝑡·𝛿

(︀
(𝑓0(𝑋)− 𝑓(𝑋) + 𝜖)2, (𝑋 − 𝑡 · 𝛿)2

)︀
− Cov

(︀
(𝑓0(𝑋)− 𝑓(𝑋) + 𝜖)2, (𝑓0(𝑋)− 𝑓(𝑋) + 𝜖)2, 𝑋2

)︀⃒⃒⃒⃒
· 𝛿2.

The subscript Cov𝑡·𝛿 indicates that the covariance is taken in the distribution 𝒩 (𝑡 ·𝛿, 1);

instead we can write this in the observed distribution, and add 𝑡 · 𝛿 to 𝑋. Further, the

terms relating to 𝜖 disappear, as they are independent of 𝑋. Thus, if we define the

modelling error 𝑔(𝑥) = 𝑓0(𝑥)− 𝑓(𝑥), we can write⃒⃒⃒⃒
E𝛿[ℓ]− 𝐸𝛿,Taylor

⃒⃒⃒⃒
≤ 1

2
sup
𝑡∈[0,1]

⃒⃒⃒⃒
Cov

(︀
𝑔(𝑋 + 𝑡 · 𝛿)2 − 𝑔(𝑋)2, 𝑋2

)︀⃒⃒⃒⃒
· 𝛿2.

We can bound the covariance using the inequality Cov(𝐴,𝐵) ≤
√︀

Var(𝐴)Var(𝐵),⃒⃒⃒⃒
E𝛿[ℓ]− 𝐸𝛿,Taylor

⃒⃒⃒⃒
≤ 1

2
sup
𝑡∈[0,1]

⃒⃒⃒⃒√︀
Var ((𝑔(𝑋 + 𝑡 · 𝛿)2 − 𝑔(𝑋)2)

⃒⃒⃒⃒
·
⃒⃒⃒⃒√︀

Var(𝑋2)

⃒⃒⃒⃒
· 𝛿2.

The first term on the right hand side is the variance of the difference of approximation

error in 𝑋 and in 𝑋 + 𝑡𝛿. If we are willing to make assumptions on the quality of

the approximation 𝑓 , we can simplify this further. For example, we can assume that

|𝑔(𝑥)2 − 𝑔(𝑦)2| ≤ 𝐶 · |𝑥− 𝑦|2, meaning that the squared error of 𝑓0(𝑥)− 𝑓(𝑥) does not

change faster than quadratically in 𝑥. In that case, we get⃒⃒⃒⃒
E𝛿[ℓ]− 𝐸𝛿,Taylor

⃒⃒⃒⃒
≤ 1

2
𝐶

⃒⃒⃒⃒√︀
Var(𝑋2)

⃒⃒⃒⃒
· 𝛿4.

In some cases, one can sharpen this bound by using prior knowledge about the data

generating mechanism (for example, the data generating function 𝑓0 may be bounded).
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D.4 Limitations of worst-case conditional subpopulation

shift for defining plausible robustness sets

For the example in Section 6.4.1, we can contrast the type of shift we consider with

the worst-case (1 − 𝛼)-conditional subpopulation shift considered by Subbaswamy

et al. (2021).

In this section, we will make the following points: First, worst-case conditional (1−𝛼)-

subpopulation shifts can be too pessimistic, with even moderate values of 𝛼 leading to

implausible conditional distributions. Second, we will argue that parametric robustness

sets enable more fine-grained control over the set of plausible shifts, leading to more

informative estimates of worst-case risk. Overall, we argue that the two approaches

are complementary, with different strengths.

Before we proceed, we define a conditional (1 − 𝛼) subpopulation shift. A (1 − 𝛼)

subpopulation shift in the conditional distribution P(𝑂|𝑌 ) is defined by a weighting

function ℎ : 𝒪 × 𝒴 ↦→ [0, 1], which has the property that E[ℎ(𝑂, 𝑌 )|𝑌 ] = 1− 𝛼 for all

values of 𝑌 . This can be used to construct a worst-case objective, which measures the

worst-case loss under such a shift:

sup
ℎ:{0,1}2 ↦→[0,1]

1

(1− 𝛼)
E[ℎ(𝑂, 𝑌 )𝜇(𝑂, 𝑌 )] (D.3)

s.t. E[ℎ(𝑂, 𝑌 )|𝑌 = 𝑦] = 1− 𝛼, for 𝑦 ∈ {0, 1}

where 𝜇(𝑂, 𝑌 ) := E[ℓ(𝑌, 𝑓)|𝑂, 𝑌 ], for a predictor 𝑓 and loss ℓ. This has the effect of

leaving the distribution P(𝑌 ) untouched, while changing the conditional distribution

P(𝑂|𝑌 ). Throughout this section, we will use the same predictor 𝑓(𝑂,𝐿) described

in Section 6.4.1. The rest of this section is structured as follows:

In Appendix D.4.1, we derive the feasible set of conditional distributions P(𝑂|𝑌 )

implicitly considered by this objective in the simple generative model of Section 6.4.1,

which only involves variables 𝑂,𝐿 and 𝑌 . We do so by showing that (for discrete 𝑂, 𝑌 ),

maximizing Equation (D.3) over ℎ is equivalent to solving a linear program, where
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we can characterize the constraints on ℎ exactly, and translate them into constraints

on P(𝑂 = 1|𝑌 = 1),P(𝑂 = 1|𝑌 = 0). Here, we show that the resulting feasible

set is quite large, even for moderately large subpopulations. In particular, whenever

(1 − 𝛼) < min{P(𝑂 = 1|𝑌 = 0),P(𝑂 = 0|𝑌 = 1)}, all conditional distributions are

possible.

In Appendix D.4.2, we derive the value of ℎ that maximizes Equation (D.3), and show

that, as we vary 𝛼, the worst-case shift is always in the same “direction” probability

space: Healthy patients (𝑌 = 0) are tested more, and sick patients (𝑌 = 1) are tested

less, and for 𝛼 < 0.27, the worst-case subpopulation shift is the (unrealistic) scenario

where healthy patients are always tested, and sick patients are never tested.

In Appendix D.4.3, we illustrate how this type of behavior can be avoided with our

approach. We first give a parameterized shift function 𝑠(𝑍; 𝛿0, 𝛿1) such that we can

reach any conditional distribution of P(𝑂|𝑌 ), for sufficiently large values of 𝛿0, 𝛿1.

We then demonstrate how an iterative process might play out with domain experts,

where we consider different constraint sets until we find a constraint set that contains

plausible shifts.

D.4.1 Feasible conditional subpopulations in Section 6.4.1

For the simple example in Section 6.4.1, we give a self-contained derivation of the

feasible region for 1− 𝛼 conditional subpopulations in the distribution P(𝑂|𝑌 ). The

advantage of working with this simple generative model is that the conditional distri-

bution can be described by only two numbers, P(𝑂 = 1|𝑌 = 1) and P(𝑂 = 1|𝑌 = 0),

and so we can visualize the resulting conditional distribution.

Because 𝑂, 𝑌 are discrete, the worst-case subpopulation in this simple example can

be solved via a linear program, for a fixed 𝛼. We have an optimization problem in

two variables, since ℎ11P(𝑂 = 1|𝑌 = 1) + ℎ01P(𝑂 = 0|𝑌 = 1) = 1− 𝛼, and likewise

for ℎ10, ℎ00, where ℎ𝑖𝑗 = ℎ(𝑂 = 𝑖, 𝑌 = 𝑗). We also have the constraint that each

variable must live in [0, 1]. Meanwhile, the loss to maximize is a linear function, as an
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expectation of E[ℎ(𝑂, 𝑌 )𝜇(𝑂, 𝑌 )], where 𝜇(𝑂, 𝑌 ) takes on four possible values, where

we write 𝑝𝑖𝑗 = P(𝑂 = 𝑖|𝑌 = 𝑗), and 𝜇𝑖𝑗 similarly.

max
ℎ∈R2×2

ℎ00𝜇00 + ℎ10𝜇10 + ℎ01𝜇01 + ℎ11𝜇11 (D.4)

s.t., ℎ11𝑝11 + ℎ01(1− 𝑝11) = 1− 𝛼

ℎ10𝑝10 + ℎ00(1− 𝑝10) = 1− 𝛼

0 ≤ ℎ𝑖𝑗 ≤ 1,∀𝑖, 𝑗

This linear program is simple enough to solve by hand, and we will do here to build

intuition. In this section, we begin by characterizing the feasible region of ℎ, and

then translating that into a feasible region for Pℎ(𝑂|𝑌 ), which we can plot in two

dimensions.

Characterizing feasible values of ℎ: Here, we focus on characterizing the feasible set

that ℎ can lie in, as a way of characterizing the feasible set for P(𝑂|𝑌 ). From the

constraints, we can write that

ℎ11𝑝11 + ℎ01(1− 𝑝11) = 1− 𝛼 =⇒ ℎ01 =
1− 𝛼− ℎ11𝑝11

1− 𝑝11

ℎ10𝑝10 + ℎ00(1− 𝑝10) = 1− 𝛼 =⇒ ℎ00 =
1− 𝛼− ℎ10𝑝10

1− 𝑝10

There are only two constraints on ℎ11: Those directly imposed by 0 ≤ ℎ11 ≤ 1,

and those which are imposed by the equality constraint with ℎ01 and the fact that

0 ≤ ℎ01 ≤ 1. For the latter, with some algebra we can write that

0 ≤ 1− 𝛼− ℎ11𝑝11
1− 𝑝11

≤ 1 =⇒ 𝑝11 − 𝛼

𝑝11
≤ ℎ11 ≤

1− 𝛼

𝑝11

So that the constraints on ℎ11 become

max

{︂
0,

𝑝11 − 𝛼

𝑝11

}︂
≤ ℎ11 ≤ min

{︂
1,

1− 𝛼

𝑝11

}︂
(D.5)

which recovers our intuition that if 𝛼 = 0, it must be that ℎ11 = 1 and ℎ01 = 1.
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Bounding feasible values of Pℎ(𝑂|𝑌 ) The parameters ℎ can be understood as im-

portance weights whose expectation is 1− 𝛼 instead of 1, that reweight P to a new

distribution Pℎ when appropriately normalized. To compute conditional probabilities

Pℎ(𝑂 = 𝑖|𝑌 = 𝑗) under the new distribution, we can compute the expectation of

1 {𝑂 = 𝑖, 𝑌 = 𝑗}, and normalize by P(𝑌 = 𝑗).

Pℎ(𝑂 = 𝑖, 𝑌 = 𝑗) =
1

1− 𝛼
E[ℎ(𝑂, 𝑌 )1 {𝑂 = 𝑖, 𝑌 = 𝑗}] = ℎ𝑖𝑗

1− 𝛼
P(𝑂 = 𝑖, 𝑌 = 𝑗)

=⇒ Pℎ(𝑂 = 𝑖|𝑌 = 𝑗) =
ℎ𝑖𝑗

1− 𝛼
P(𝑂 = 𝑖|𝑌 = 𝑗)

where the implication follows from the fact that Pℎ(𝑌 ) = P(𝑌 ). This allows us

to translate bounds on ℎ𝑖𝑗 directly into bounds on Pℎ(𝑂 = 𝑖|𝑌 = 𝑗). Making use

of Equation (D.5), we can write that

max

{︂
0,

𝑝11 − 𝛼

𝑝11

}︂
· 𝑝11
1− 𝛼

≤ Pℎ(𝑂 = 1|𝑌 = 1) ≤ min

{︂
1,

1− 𝛼

𝑝11

}︂
· 𝑝11
1− 𝛼

which yields

max

{︂
0,

𝑝11 − 𝛼

1− 𝛼

}︂
≤ Pℎ(𝑂 = 1|𝑌 = 1) ≤ min

{︂
𝑝11

1− 𝛼
, 1

}︂

We can apply a similar logic to ℎ10, which is identical except for 𝑝11 being replaced by

𝑝10, yielding

max

{︂
0,

𝑝10 − 𝛼

1− 𝛼

}︂
≤ Pℎ(𝑂 = 1|𝑌 = 0) ≤ min

{︂
𝑝10

1− 𝛼
, 1

}︂

Visualizing the constraint set: Figure D-5 gives feasible conditional distributions

under different values of 𝛼. We can observe that when 𝛼 = 0.8, all conditional

distributions are feasible, including the distribution where P(𝑂 = 1|𝑌 = 0) = 1

and P(𝑂 = 1|𝑌 = 1) = 0, representing the case where every healthy patient gets

tested, and no sick patients receive a test. This is generally possible in this example

whenever 1− 𝛼 < min{P(𝑂 = 1|𝑌 = 0),P(𝑂 = 0|𝑌 = 1)}, as it permits the following
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Figure D-5: Feasible sets, worst-case directions, and worst-case solutions for a (1− 𝛼)
subpopulation shift in the conditional distribution P(𝑂|𝑌 ) for differing values of 𝛼.
Worst-case directions are computed using Equation (D.6), as unit-norm vectors re-
scaled to fit in the plot, and the colored dots give the worst-case solutions, all of which
lie in the lower-right corner of the constraint set. The original conditional distribution
is given by the black dot.

subpopulation function, which yields this result.

ℎ(𝑂 = 𝑜, 𝑌 = 𝑦) =
1− 𝛼

P(𝑂 = 𝑜|𝑌 = 𝑦)
1 {𝑜 ̸= 𝑦}

D.4.2 Worst-case conditional subpopulation shifts

Given the constraint set which describes the feasible set of conditional distributions

under the (1− 𝛼)-conditional subpopulation objective, we can derive the worst-case

conditional distribution. Here, since 𝑌,𝑂 are both binary, the expected loss under a

new distribution Pℎ is given by

Eℎ[ℓ] =
∑︁
𝑦,𝑜

𝜇(𝑜, 𝑦)Pℎ(𝑂 = 𝑜|𝑌 = 𝑦)P(𝑌 = 𝑦)

which we can write in terms of the constrained probabilities Pℎ as follows, where

𝑞11 := Pℎ(𝑂 = 1|𝑌 = 1) and 𝑞10 := Pℎ(𝑂 = 1|𝑌 = 0)

P(𝑌 = 1)[𝜇(1, 1)𝑞11 + 𝜇(0, 1)(1− 𝑞11)] + P(𝑌 = 0)[𝜇(1, 0)𝑞10 + 𝜇(0, 0)(1− 𝑞10)]
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which also gives us a direction in which the loss is maximized, since the loss is given by

Eℎ[ℓ] = 𝑞11 ·P(𝑌 = 1) · (𝜇(1, 1)−𝜇(0, 1))+ 𝑞10P(𝑌 = 0) · (𝜇(1, 0)−𝜇(0, 0))+𝐶 (D.6)

where 𝐶 = P(𝑌 = 1)𝜇(0, 1) + P(𝑌 = 0)𝜇(0, 0). Since 𝑞11, 𝑞10 can be optimized

independently, the worst-case solution is given by taking the maximum value of 𝑞11

if 𝜇(1, 1) > 𝜇(0, 1) and the minimum value if 𝜇(1, 1) < 𝜇(0, 1), and likewise taking

the maximum value of 𝑞10 if 𝜇(1, 0) > 𝜇(0, 0), and the minimum value otherwise. If

𝜇(1, 1) = 𝜇(0, 1) or 𝜇(1, 0) = 𝜇(0, 0), then the objective is unaffected by the choice of

𝑞11 or 𝑞10 respectively.

Visualizing the worst-case conditional distributions The worst-case directions on the

probability scale, and the resulting worst-case conditional distribution obtained by

solving Equation (D.4), are given in Figure D-5. The red line arrow visualizes the

direction from Equation (D.6), and the worst-case distribution is the point which is

furthest in this direction in the constraint set. Here, we are finding the worst-case

accuracy of the same predictive model 𝑓(𝑂,𝐿) described in Section 6.4.1. We can

observe that the worst-case loss is obtained by seeking to reverse the correlation

between 𝑌 and 𝑂, decreasing the probability that a sick patient (𝑌 = 1) gets a test

ordered, and increasing the probability that a healthy patient (𝑌 = 0) gets a test

ordered.

D.4.3 Iterating with domain experts to define realistic parametric

robustness sets

In the previous sections, we saw that (1− 𝛼)-conditional subpopulation shift does not

always produce realistic worst-case conditional distributions. Moreover, given only the

parameter 𝛼, there is limited ability to control the nature of the resulting worst-case

conditional distribution P(𝑂|𝑌 ). In this section, we contrast this limitation with the

finer-grained control enabled by considering parametric robustness sets. In particular,

we argue that parametric shifts allow for end-users to customize robustness sets, ruling
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Figure D-6: Each figure shows the set of conditional probability distributions (“CPDs”)
P(𝑂|𝑌 ) that can be represented by a shift of (𝛿0, 𝛿1) ∈ Δ0×Δ1, along with the worst-case
distribution (given by the red star) for the 0–1 loss. In this example, the expected loss
under P𝛿 is a linear function of the two conditional probabilities (see Appendix D.4.2),
where the loss increases along the red arrow. (a) captures (nearly) all conditional
probability distributions, with Δ0,Δ1 unconstrained. (b) shows a set of CPDs with Δ0

unconstrained, and Δ1 = [−1, 1], with resulting worst-case accuracy of 50%. (c) shows
a more restrictive set of shifts, where Δ0 = [−1.05, 1.05],Δ1 = {0}. The worst-case
accuracy in this case is 69%, comparable to the accuracy of 75% on the original
distribution.

out shifts that represent unrealistic changes.

In practice, we imagine that the following iterative process could be a useful tool

in model development: (i) Define a class of shifts with an appropriate 𝑠(𝑍; 𝛿) and

constraint set Δ, and search for a worst-case shift 𝛿. (ii) Present to domain experts

both the worst-case shift 𝛿 (in terms of summary statistics of the resulting distribution

P𝛿) alongside the associated estimate of the worst-case loss. For instance, report both

the worst-case loss, as well as corresponding rate of testing among sick and healthy

patients. (iii) If the shift itself is unrealistic, further the constrain parameter set or

shift function, and repeat the process.

In Figure D-6, we give a concrete example. Each sub-figure shows the set of conditional

probability distributions P(𝑂|𝑌 ) that can be represented by a shift of (𝛿0, 𝛿1) ∈ Δ0×Δ1,

along with the worst-case conditional distribution (given by the red star) for the 0–1

loss. Recall that we use the shift function 𝑠(𝑌 ; 𝛿) = 𝛿0 + 𝛿1𝑌 , where 𝛿0 controls a

general increase or decrease in testing, while 𝛿1 controls a shift in the testing rate
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for only sick patients, and allows for a different change in the testing rate of sick vs

healthy patients.

Iteration 1: We might imagine starting with a relatively unconstrained robustness set,

where 𝛿0 and 𝛿1 are unconstrained. Figure D-6a shows the resulting robustness set of

conditional distributions, and finds a shift with with a worst-case accuracy of 16%,

compared to accuracy of 75% on the original distribution. However, the corresponding

𝛿-perturbation P𝛿 is unrealistic, where all healthy patients (and no sick patients)

are tested. Luckily, because we have parameterized the shift, we can constrain the

robustness set to exclude these types of results.

Iteration 2: A benefit of our approach is that we can refine the robustness set, with

this type of feedback in mind. In Figure D-6b, we restrict the support of 𝛿1 to [−1, 1],

to avoid large changes in the relative probability of testing sick vs healthy patients.

Here, the resulting worst-case accuracy is much higher (50%), but the corresponding

worst-case conditional probability distribution is perhaps still unrealistic: No patients

undergo laboratory testing at all!

Iteration 3: Finally, we consider only shifts that affect all patients in a similar way,

generally raising or lowering the conditional probability of a lab test, represented

by shifts in 𝛿0 alone. This may correspond to a more realistic scenario where (in a

new hospital) laboratory testing use is more or less constrained. Additionally, we can

specify that this shift should decrease testing rates by at most 20%, which translates

directly into a lower-bound on 𝛿0.
4 Figure D-6c shows the resulting robustness set

of distributions, where the worst-case shift may seem more plausible: A reduction

in testing rates for both populations. The worst-case accuracy in this case is 69%,

comparable to the accuracy of 75% on the original distribution.

4In Proposition D.2.1, we prove that for binary random variables with a shift 𝜂(𝑍) + 𝛿, there is a
one-to-one mapping between a new marginal distribution (P(𝑂 = 1) in this case) and the value of
the parameter 𝛿.
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D.5 CelebA: Experiment details and additional results

In this section, we give details of the computer vision experiment in Section 6.4.2.

D.5.1 Details for the experiment

Creating the training distribution To construct the training distribution P, we

use the conditional GAN in Kocaoglu et al. (2018). In particular, we use their

CausalBEGAN, which is an extends the boundary equillibrium GAN (Berthelot et al.,

2017) to also take attributes as inputs. We train the CausalBEGAN using the default

hyper parameters in the implementation provided by Kocaoglu et al. (2018), available

under the MIT license. The model is trained for 250,000 iterations on a single GPU,

taking around approximately 16 hours.

Similar to Kocaoglu et al. (2018), we use the CelebA dataset (Liu et al., 2015), which

contains approximately 200,000 images of faces, along 40 binary attributes. Of those,

we use the following 9 attributes {Male, Young, Wearing Lipstick, Bald, Mustache,

Eyeglasses, Narrow Eyes, Smiling, Mouth Slightly Open}. The CelebA dataset is

licensed for non-commercial research purposes only, and consists of publicly available

images of celebrities, which were collected from the internet. Although the data set

has been widely used, Liu et al. (2015) do not make any mention of consent by the

individuals to have the images included in the data set, and it is therefore likely that

those celebrities did not provide consent.

Training distribution over attributes For the training distribution, we simulate

binary attributes according to the structural causal model in Figure 6-4 (for convenience

also copied to Figure D-7), where the model parameters are

P(Young = 1) = 𝜎(0.0)

P(Male = 1) = 𝜎(0.0)

P(Eyeglasses = 1|Young) = 𝜎(0.0− 0.4 · Young)
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Age Gender

Eyeglasses Bald Mustache SmilingWearing Lipstick

Mouth Slightly Open Narrow Eyes

Figure D-7: Causal graph over attributes, where lightning bolts indicate changes in
mechanisms. Also displayed in Figure 6-4.

P(Bald = 1|Young, Male) = 𝜎(−3.0 + 3.5 ·Male− Young)

P(Mustache = 1|Young, Male) = 𝜎(−2.5 + 2.5 ·Male− Young)

P(Smiling = 1|Young, Male) = 𝜎(0.25− 0.5 ·Male + 0.5 · Young)

P(Wearing Lipstick = 1|Young, Male) = 𝜎(3.0− 5.0 ·Male− 0.5 · Young)

P(Mouth Slightly Open = 1|Young, Smiling) = 𝜎(−1.0 + 0.5 · Young + Smiling)

P(Narrow Eyes = 1|Male, Young, Smiling) = 𝜎(−0.5 + 0.3 ·Male + 0.2 · Young + Smiling),

where each variable either takes the value 0 or 1 and 𝜎 indicates the sigmoid. To

generate data, we first simulate attributes from this binary Bayesian network, which

we then pass as inputs to the GAN to simulate images (in addition to the random

noise used by the GANs to simulate different images). In Figures D-8 and D-9, we

plot examples of the training images that were generated.

Predictive model We simulate a training set of 12,000 attribute-image pairs, and

a validation set of 2,000 pairs. The training set is used to fit a classifier 𝑓 , and the

validation set is used for model selection. To build a classifier 𝑓 , we use the ResNet-50

(He et al., 2016) model implemented in the python package torch. We add a final

fully connected layer to adapt the ResNet model to a binary classification task, and

fine-tune the model on the training data by (only) learning the weights and bias of

the final layer. The model is trained using the negative log-likelihood criterion and an

ADAM optimizer. The model is trained for 25 epochs and we select the model which
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after a full epoch had the best validation set performance. Given the learned model

𝑓 , we simulate a separate validation dataset of 𝑛 = 1,000 samples, and make model

predictions 𝑓(𝑋). We then compute the model accuracy as ℓ = 1 {𝑓(𝑋) = 𝑌 }, which

is the input to computing the shift gradient and Hessian.

Estimation of shifted loss We apply the methods in Section 6.3.2 to estimate the

worst-case shift to the distribution P (given by the binary probabilities above). For

each conditional P(𝑊𝑖|PA(𝑊𝑖)), we consider a shift 𝜂𝛿𝑖(PA(𝑊𝑖)) = 𝜂(PA(𝑊𝑖)) +∑︀
𝑧∈𝒵 1 {PA(𝑊𝑖) = 𝑧} 𝛿𝑖, which corresponds to arbitrarily shifting the conditional dis-

tribution (see Appendix D.3.4). For example, for 𝑊𝑖 = Bald, where 𝜂(Young, Male) =

−3.0 + 3.5 ·Male− 1.0 · Young, the shift would be

𝜂𝛿Bald
(Young, Male) = 𝜂(Young, Male) +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝛿Bald,0, Young = 0,Male = 0

𝛿Bald,1, Young = 0,Male = 1

𝛿Bald,2, Young = 1,Male = 0

𝛿Bald,3, Young = 1,Male = 1.

(D.7)

For each 𝑊𝑖, this means that 𝛿𝑖 is R2|PA(𝑊𝑖)| , and in total 𝛿 = (𝛿1, . . . , 𝛿8) ∈ R31 (we

do not consider shifts in the distribution of gender, since this is the label we are

predicting).

We compute the shift gradient and Hessian using Theorem 6.1. In particular, since

𝑊𝑖 is binary, the sufficient statistic is 𝑇 (𝑊𝑖) = 𝑊𝑖, so the shift gradients and Hessians

given by Appendix D.3.4. See Appendix D.3.1 for a detailed walk through of computing

the shift gradient and Hessian from a sample.

For any given 𝛿, the shifted distribution of 𝑊𝑖 is given by P𝛿(𝑊𝑖 = 1|PA(𝑊𝑖)) = 𝜎(𝜂𝛿𝑖),

where 𝜂𝛿𝑖 is computed similar to Equation (D.7), and 𝜎 is the sigmoid function. Then

the importance sampling weights are given by

𝑤𝛿 =
8∏︁

𝑖=1

𝜎(𝜂𝛿𝑖(PA(𝑊𝑖)))

𝜎(𝜂(PA(𝑊𝑖))
.
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Figure D-8: Examples of images from the training distribution P. Each of the four
groups (Bald, Smiling, Wearing Lipstick, Male) show training images who have that
characteristic.

Figure D-9: Examples of images from the training distribution P and the test distribu-
tion P𝛿 that is characterized by the worst-case shift 𝛿, see Figure 6-4.

Using these weights, for any 𝛿, we can estimate E𝛿[ℓ] by �̂�𝛿,IS and �̂�𝛿,Taylor using

Equations (6.6) and (6.8), respectively.

D.5.2 Full table of worst-case shift in Section 6.4.2

In Section 6.4.2, we find the worst-case shift 𝛿, and display the 5 largest components.

In Table D.2, we display the full vector 𝛿 ∈ R31, sorted by absolute value of the size of

the component.
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Conditional 𝛿𝑖

Bald | Male= 0, Young= 0 0.899
Bald | Male= 1, Young= 1 -0.800
Bald | Male= 1, Young= 0 -0.680
Wearing Lipstick | Male= 0, Young= 1 -0.618
Wearing Lipstick | Male= 0, Young= 0 -0.543
Eyeglasses | Young= 1 0.507
Mustache | Male= 1, Young= 0 -0.476
Mustache | Male= 0, Young= 0 0.449
Mustache | Male= 1, Young= 1 -0.415
Eyeglasses | Young= 0 0.399
Smiling | Male= 0, Young= 0 -0.261
Wearing Lipstick | Male= 1, Young= 0 0.205
Narrow Eyes | Male= 0, Smiling= 0, Young= 0 0.192
Mouth Slightly Open | Smiling= 1, Young= 1 0.191
Smiling | Male= 1, Young= 0 0.183
Narrow Eyes | Male= 1, Smiling= 1, Young= 1 0.179
Mouth Slightly Open | Smiling= 0, Young= 1 -0.153
Mustache | Male= 0, Young= 1 0.133
Bald | Male= 0, Young= 1 0.128
Mouth Slightly Open | Smiling= 1, Young= 0 -0.127
Narrow Eyes | Male= 0, Smiling= 1, Young= 0 -0.125
Wearing Lipstick | Male= 1, Young= 1 0.123
Narrow Eyes | Male= 1, Smiling= 1, Young= 0 -0.117
Narrow Eyes | Male= 0, Smiling= 0, Young= 1 0.106
Young | No parents 0.092
Narrow Eyes | Male= 0, Smiling= 1, Young= 1 0.057
Narrow Eyes | Male= 1, Smiling= 0, Young= 1 -0.050
Narrow Eyes | Male= 1, Smiling= 0, Young= 0 -0.039
Mouth Slightly Open | Smiling= 0, Young= 0 0.028
Smiling | Male= 1, Young= 1 0.028
Smiling | Male= 0, Young= 1 0.017

Table D.2: Worst case shift in the 𝛿 ∈ R31 identified by the Taylor approach in
Section 6.4.2. Each entry corresponds to a shift in a conditional distribution given a
particular outcome, and the squared sum of the entries equal 𝜆2 = 4.

D.5.3 Sample images from training distribution in Section 6.4.2

In Figure D-8, for the 4 attributes {Bald, Smiling, Wearing Lipstick, Male}, we display

images generated from the training distribution P (i.e. by the GAN) with that

particular attribute. In Figure D-9 we show 10 randomly drawn images from the
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training distribution P as well as the test distribution P𝛿 corresponding to the worst-

case 𝛿 found in Section 6.4.2.
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D.5.4 Impact of changing 𝜆

The shift considered in the main text yields a relatively small drop in accuracy. To

demonstrate that larger drops in accuracy are possible, we repeated our experimental

setup over the same 100 initial validation datasets, while varying the size of the

constraint ‖𝛿‖2 ≤ 𝜆. We report results in Table D.3 for 𝜆 ∈ [2, 4, 6, 8, 10], where 𝜆 = 2

corresponds to the setting of Table 6.1b.

Table D.3: Performance of the Taylor and IS approaches over different values of
𝜆, where 𝜆 = 2 corresponds to the setting of Table 6.1b. Averages taken over 100
simulations.

𝜆 = 2 𝜆 = 4 𝜆 = 6 𝜆 = 8 𝜆 = 10

Original Acc. (E[1{𝑓(𝑋) = 𝑌 }]) 0.912 0.912 0.912 0.912 0.912

Acc. under Taylor shift (E𝛿Taylor
[1{𝑓(𝑋) = 𝑌 }]) 0.874 0.812 0.736 0.681 0.648

IS est. of acc. under Taylor shift (�̂�𝛿Taylor,IS) 0.863 0.795 0.715 0.658 0.625

Taylor est. of acc. under Taylor shift (�̂�𝛿Taylor,Taylor) 0.863 0.798 0.711 0.601 0.466

Acc. under IS shift (E𝛿IS [1{𝑓(𝑋) = 𝑌 }]) 0.889 0.830 0.746 0.670 0.596

IS est. of acc. under IS Shift (�̂�𝛿IS,IS) 0.821 0.670 0.463 0.264 0.130

Recall that we have two complementary goals: First, we would like to find a shift

that results in a large drop in accuracy. Second, we would like to reliably evaluate

the impact of the shift that we find, using only the training data. These two goals

can be tackled with different approaches, such as using the Taylor approximation

to find a shift, but using importance sampling (IS) to estimate the loss under that

shift. Table D.3 allows us to compare three different strategies: (i) using the Taylor

approximation for both finding and evaluating the shift, (ii) using IS for both finding

and evaluating, and (iii) using Taylor to find, but IS to evaluate the shift.

From Table D.3, we can observe that using Taylor to find, but IS to evaluate,

consistently performs best in terms of reliable evaluation (i.e., predicting the shifted

accuracy), across all values of 𝜆. For 𝜆 = 2, the bias in evaluation is 1% (predicting

86% vs ground truth of 87% on average), and for 𝜆 = 10, the bias of this approach is

still only 2% (predicting 63% vs ground truth of 65% on average). In contrast, for

𝜆 = 10, the first strategy (using Taylor to find and evaluate) over-predicts the impact
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by 18%, and the second strategy (using IS to find and evaluate) over-predicts the

impact by 47%.

This strategy also tends to find the most impactful shifts, for moderate values of

𝜆. For 𝜆 ≤ 6, the shifts found by the Taylor approach are more impactful than those

found by the IS approach. Moreover, the drop in accuracy remains substantial (e.g.,

a drop of around 17% at 𝜆 = 6). For 𝜆 > 6, the story is more subtle: The third

approach (using IS to find and evaluate shifts) finds more impactful shifts, but (as

noted previously) dramatically over-estimates their impact.

D.6 Relationship to other approaches

In this section, we give a more detailed discussion of how our work relates to other

approaches for evaluation of distributional robustness and learning of robust models.

Much of the content from Section 6.1.1 is duplicated here, but expanded upon to

include other relevant work and detailed discussion.

Distributionally Robust Optimization/Evaluation with divergence measures: Distri-

butionally robust optimization (DRO) seeks to learn models that minimize objectives

of the form of Equation (6.1) (Duchi and Namkoong, 2021; Duchi et al., 2020b;

Sagawa et al., 2020). We focus on proactive worst-case evaluation of a fixed model,

not optimization, similar to Subbaswamy et al. (2021); Li et al. (2021), but major

differences between our work and prior work lie in the definition of the set of plausible

future distributions 𝒫 , often called an “uncertainty set” in the optimization literature,

where the goal is to specify a set that captures expected shifts, without being overly

conservative.

Shifts in P(𝑋, 𝑌 ): A conservative approach is to include all joint distributions P(𝑋, 𝑌 )

within a certain neighborhood of the training distribution. Many coherent risk

measures can be written as a worst-case loss of this form. For instance, the Entropic

Value-at-Risk (EVaR), with confidence level 1− 𝛼, corresponds to the worst-case loss

over a set of distributions 𝒫 = {𝑃 ≪ 𝑃0 : 𝐷𝐾𝐿(𝑃‖𝑃0) ≤ − ln𝛼}, where 𝑃0 is the
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original distribution (Ahmadi-Javid, 2012). Similarly, the Conditional Value-at-Risk

(CVaR) with parameter 𝛼 can be seen as the worst-case loss over an uncertainty set

obtained from a limiting 𝑓 -divergence (see Example 3 of Duchi and Namkoong (2021)),

including all 𝛼-fractions of the original distribution. These measures are appealing, in

that they are straightforward to compute, but can be very conservative.

Indeed, such measures often reduce to only considering the distribution of the loss

itself. CVaR, for instance is equivalent to sorting the training examples by their loss,

and taking the average loss of the top 𝛼-fraction. To illustrate these limitations, it is

straightforward to see that, using the 0-1 loss and a classifier with 80% accuracy, the

worst-case loss under both of these measures is 1.0 for any 𝛼 ≤ 0.2. This is intuitive

for CVaR (since over 20% of samples are misclassified in the original distribution),

and follows for EVaR from the fact that the binary distribution with probability 𝑞 = 1

has a KL-divergence to the original distribution 𝑝 = 0.2 of − ln 0.2.

Lam (2016) consider a more general problem of estimating the worst-case performance

of stochastic systems over infinitesimal changes in distribution, measured by Kullback-

Leibler divergence. Their approach is applicable beyond machine-learning settings, and

generalizes to e.g., worst-case waiting times in a queueing system. They demonstrate

that for a sufficiently small neighborhood of distributions, this worst-case performance

can be well-approximated by a Taylor expansion whose coefficients can be estimated

from the original distribution.

Shifts in P(𝑋) alone: Partially due to this overly-conservative behavior, there has been

a line of work incorporating additional restrictions on the allowable shift (i.e., adding

more assumptions). For instance, Duchi et al. (2020b) considers learning predictive

models that optimize a worst-case loss similar to CVaR (a “worst-case subpopulation

shift”), but where only P(𝑋) is allowed to change, and P(𝑌 | 𝑋) is assumed to be

constant. For similar shifts, Li et al. (2021) considers only the task of evaluation, but

provides a novel estimation procedure with dimension-free finite-sample guarantees.

However, many real-world shifts do not fit this framework: In Example 6.1, both P(𝑋)

and P(𝑌 | 𝑋) are changing, where 𝑋 = (𝐴,𝑂, 𝐿), as a result of a shift in P(𝑂 | 𝑌,𝐴).
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Shifts in a conditional distribution: Closer to our work is Subbaswamy et al. (2021)

who consider evaluating the loss under worst-case changes in a conditional distribution,

but while we consider parametric shifts, they estimates the loss under worst-case

(1− 𝛼) conditional subpopulation shifts. However, it is not obvious how to choose an

appropriate level of 𝛼: in some settings, seemingly plausible values of 𝛼 (e.g., a 20%

subpopulation) correspond to entirely implausible shifts. We give a simple lab-testing

example in Appendix D.4, where the worst-case subpopulation is one where healthy

patients are always tested, and sick patients never tested.

In contrast to these methods, our approach uses explicit parametric perturbations

to define shifts, as opposed to distributional distances or subpopulations. In addi-

tion, our approach allows for shifts in multiple marginal or conditional distributions

simultaneously: In Example 6.1, for instance, we can model a simultaneous change in

both the marginal distribution of age, as well as the conditional distribution of lab

testing, while other conditionals are unchanged. Our main requirement is that each

shifting distribution is exponential family, and that the shift can be represented via

the natural parameters: For continuous variables this is a non-trivial restriction, but

for discrete variables it is true by definition.

Causality-motivated methods for learning robust models: Several approaches seek

to learn models that perform well under arbitrarily large causal interventions (which

result in arbitrary changes in selected conditional distributions). Several approaches

proactively specify shifting mechanisms/conditional distributions, and then seek to

learn predictors that have good performance under arbitrarily large changes in these

mechanisms (Subbaswamy et al., 2019; Veitch et al., 2021; Makar et al., 2022; Puli

et al., 2022). Other approaches use auxiliary information, such as environments

(Magliacane et al., 2018; Rojas-Carulla et al., 2018; Arjovsky et al., 2019) or identity

indicators (Heinze-Deml and Meinshausen, 2021) to learn models that rely on invariant

conditional distributions. The worst-case optimality of these approaches is often

restricted to cases where the shifts are arbitrarily large: In Example 6.1, worst-case

optimality under arbitrarily large shifts would correspond to minimizing the worst-case

469



loss under all possible lab testing policies.

However, when the causal interventions (i.e., changes in causal mechanisms) are

bounded (i.e., not arbitrary), then these approaches are not necessarily optimal.

Closest to our work in motivation is prior work on robustness to bounded shift

interventions in linear causal models (Rothenhäusler et al., 2021; Oberst et al., 2021b;

Kook et al., 2022). Our work can be seen as extending those ideas to general non-linear

causal models, where our focus is on evaluation rather than learning robust models.

We discuss this point in more detail in Appendix D.6.1 below.

Our work can serve as an aid to deploying these causality-motivated methods in a

few ways, by comparing their worst-case performance under bounded shifts: First, our

work can inform whether such methods should be deployed at all, as for sufficiently

small shifts, it may be the case that standard training yields better performance.

Second, our work can inform hyperparameter selection for several of these approaches,

which include regularization terms that implicitly trade off between robustness and

in-distribution performance. More broadly, our approach is useful for probing (and

comparing) the reliability of specific learned models under shift, regardless of the

algorithm that produced them.

Evaluating out-of-distribution performance with unlabelled samples: A recent line

of work has focused on predicting model performance in out-of-distribution settings,

where unlabelled data is available from the target distribution (Garg et al., 2022; Jiang

et al., 2022; Chen et al., 2021). In contrast, our method operates using only samples

from the original source distribution, and seeks to estimate the worst-case loss over a

set of possible target distributions.

D.6.1 The importance of considering restricted shifts in causal mech-

anisms

In Figure D-10 we revisit Example 6.1, adopting the perspective of a model developer,

who is aware that laboratory testing policies (i.e., 𝑃 (𝑂 | 𝐴, 𝑌 )) may change. As this
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change may impact the correlation between laboratory testing features (𝑂,𝐿) and the

label 𝑌 , how should the model developer proceed?

From a causal perspective, one way to approach model development is to learn a

predictive model that is “causal” in the sense that it only relies on the causal parents

of the label 𝑌 . In this example, 𝐴 is the full set of causal parents of 𝑌 , and the

conditional distribution 𝑃 (𝑌 = 1 | 𝐴) does not change under changes in laboratory

testing policy. This conditional distribution is an example of an “invariant” conditional

distribution (Rojas-Carulla et al., 2018), reflecting the unchanging causal mechanisms

that generate 𝑌 which are not affected by changes in laboratory testing policy. With

this in mind, we consider the choice between two models:

• Age-based model: 𝑓(𝐴) ≈ 𝑃 (𝑌 = 1 | 𝐴), predicting disease using age alone.5

• Full model: 𝑓(𝐴,𝑂,𝐿) ≈ 𝑃 (𝑌 = 1 | 𝐴,𝑂,𝐿), predicting disease using all

features.

We now demonstrate the utility of incorporating additional knowledge, considering not

only “what” can change (i.e., 𝑃 (𝑂 | 𝐴, 𝑌 )), but also considering “how” and “how much”

it can change, and translating that knowledge into a quantitative comparison between

these modelling choices. The question of “how” corresponds to our choice of shift

function, and “how much” corresponds to our choice of constraints on shift parameters.

We consider changes in testing that correspond to a uniform increase/decrease in

testing rates, parameterized as

𝑃𝛿(𝑂 = 1 | 𝐴, 𝑌 ) = sigmoid(𝜂(𝐴, 𝑌 ) + 𝛿) (D.8)

Other details of the underlying distribution are given in Appendix D.1.

In Figure D-10 (right), we plot the loss of each model under distributions6 that corre-

5Details of how the full model 𝑓(𝐴,𝑂,𝐿) is trained are described in Appendix D.1. The model
𝑓(𝐴) is trained using unregularized logistic regression. Both models are trained on data drawn from
the original distribution, where the marginal testing rate is 50%.

6In this case, every choice of 𝛿 maps to a unique marginal testing rate in the distribution 𝑃𝛿

(see Proposition D.2.1), so we plot the loss as a function of testing rate, instead of 𝛿 directly.
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Figure D-10: (Left) Causal graph for Example 6.1, where the variables are 𝑌 ∈ {0, 1}
for the label (Disease), 𝐴 ∈ R for Age, 𝑂 ∈ {0, 1} for whether a laboratory test is
ordered (Test Order), and 𝐿 ∈ R for the lab result (Test Result), if available. (Right)
Using the same generative model as in Appendix D.1, we contrast the performance of
the full model 𝑓(𝐴,𝑂,𝐿) and a model 𝑓(𝐴) that only uses age, across distributions
which differ in testing rates according to 𝑃𝛿(𝑂 = 1 | 𝐴, 𝑌 ) = sigmoid(𝜂(𝐴, 𝑌 ) + 𝛿).
Comparing performance on a range of distributions where we vary 𝛿, we observe
that 𝑓(𝐴) has invariant loss, but 𝑓(𝐴,𝑂,𝐿) has better performance for a wide range
of shifts 𝛿. In particular, if we compare the worst-case loss under shifts |𝛿| ≤ 1.5
(corresponding to marginal testing rates in the grey region), we can observe that the
worst-case loss of 𝑓(𝐴,𝑂,𝐿) is lower than that of 𝑓(𝐴).

spond to different choices of 𝛿, and observe that despite having invariant performance,

the age-based model only out-performs the full model under substantial changes

in testing policy. In this case, the model 𝑓(𝐴) (throwing away laboratory testing

information) yields better performance if testing rates drop substantially, but for a

large set of changes in testing rates, the full model 𝑓(𝐴,𝑂,𝐿) is superior.

Considering the worst-case performance of each model can guide model selection.

If a substantial change in testing rates is not plausible (which can be expressed as

constraints on 𝛿), and the worst-case loss (over plausible changes) of 𝑓(𝐴,𝑂, 𝐿) is lower

than that of 𝑓(𝐴), the model developer may decide to use the full model 𝑓(𝐴,𝑂, 𝐿) in

any case.
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D.7 Proofs

D.7.1 Proof of Proposition 6.1

Proposition 6.1. For any P𝛿(V),P(V) that satisfy Definition 6.4, supp(P) = supp(P𝛿)

and the density ratio 𝑤𝛿 := P𝛿/P is given by

𝑤𝛿(V) = exp

(︂ 𝑚∑︁
𝑖=1

𝑠𝑖(𝑍𝑖; 𝛿𝑖)
⊤𝑇𝑖(𝑊𝑖)

)︂
exp

(︃
𝑚∑︁
𝑖=1

ℎ(𝜂𝑖(𝑍𝑖))− ℎ(𝜂(𝑍𝑖) + 𝑠𝑖(𝑍𝑖; 𝛿𝑖))

)︃
.

Proof. By Definition 6.4 and Assumption 6.1, we have that

P𝛿(V) =
𝑚∏︁
𝑖=1

P𝛿𝑖(𝑊𝑖|𝑍𝑖)
∏︁

𝑉𝑗∈V∖W

P(𝑉𝑗|𝑈𝑗)

P(V) =
𝑚∏︁
𝑖=1

P(𝑊𝑖|𝑍𝑖)
∏︁

𝑉𝑗∈V∖W

P(𝑉𝑗|𝑈𝑗).

It follows that the supports of P𝛿 and P are the same: Since the exponential family

density is given by the base measure 𝑔𝑖(𝑊𝑖) times a exponential term (which is always

strictly positive), and since the terms
∏︀

𝑉𝑗∈V∖W P(𝑉𝑗|𝑈𝑗) are shared between P𝛿 and

P, their supports agree.

To get the density ratio, we take the ratio of P𝛿(V) and P(V), and the terms 𝑉𝑗 ∈ V∖W

cancel:

𝑤𝛿(V) =
P𝛿(V)

P(V)

=
𝑚∏︁
𝑖=1

P𝛿𝑖(𝑊𝑖|𝑍𝑖)

P(𝑊𝑖|𝑍𝑖)
.

By Definition 6.4 and Assumption 6.1, each P𝛿𝑖(𝑊𝑖|𝑍𝑖) is a 𝛿𝑖-perturbation around
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the CEF distribution P(𝑊𝑖|𝑍𝑖), so plugging in the exponential family densities, we get

𝑤𝛿(V) =
𝑚∏︁
𝑖=1

𝑔(𝑊𝑖) exp

(︂
{𝜂𝑖(𝑍𝑖) + 𝑠𝑖(𝑍𝑖; 𝛿𝑖)}⊤𝑇𝑖(𝑊𝑖)− ℎ𝑖(𝜂𝑖(𝑍𝑖) + 𝑠𝑖(𝑍𝑖; 𝛿𝑖))

)︂
𝑔(𝑊𝑖) exp

(︂
𝜂𝑖(𝑍𝑖)⊤𝑇𝑖(𝑊𝑖)− ℎ𝑖(𝜂𝑖(𝑍𝑖))

)︂
=

𝑚∏︁
𝑖=1

exp

(︂
𝑠𝑖(𝑍𝑖; 𝛿𝑖)𝑇𝑖(𝑊𝑖)− ℎ𝑖(𝜂𝑖(𝑍𝑖) + 𝑠𝑖(𝑍𝑖; 𝛿𝑖)) + ℎ𝑖(𝜂𝑖(𝑍𝑖))

)︂
= exp

(︂ 𝑚∑︁
𝑖=1

𝑠𝑖(𝑍𝑖; 𝛿𝑖)𝑇𝑖(𝑊𝑖)

)︂
exp

(︂ 𝑚∑︁
𝑖=1

ℎ𝑖(𝜂𝑖(𝑍𝑖))− ℎ𝑖(𝜂𝑖(𝑍𝑖) + 𝑠𝑖(𝑍𝑖; 𝛿𝑖))

)︂
.

D.7.2 Proof of Theorem 6.1

Theorem 6.1 (Shift gradients and Hessians as covariances). Assume that P𝛿,P sat-

isfy Definition 6.4, with intervened variables W = {𝑊1, . . . ,𝑊𝑚} and shift func-

tions 𝑠𝑖(𝑍𝑖; 𝛿𝑖), where 𝛿 = (𝛿1, . . . , 𝛿𝑚). Then the shift gradient is given by SG1 =

(SG1
1, . . . , SG

1
𝑚) ∈ R𝑑𝛿 where

SG1
𝑖 = E

[︂
𝐷⊤

𝑖,1Cov

(︂
ℓ, 𝑇𝑖(𝑊𝑖)

⃒⃒⃒⃒
𝑍𝑖

)︂]︂
,

and the shift Hessian is a matrix of size (𝑑𝛿 × 𝑑𝛿), where the (𝑖, 𝑗)th block of size

𝑑𝛿𝑖 × 𝑑𝛿𝑗 equals

{SG2}𝑖,𝑗 =

⎧⎪⎨⎪⎩E
[︁
𝐷⊤

𝑖,1Cov
(︁
ℓ, 𝜖𝑇𝑖|𝑍𝑖

𝜖⊤𝑇𝑖|𝑍𝑖
|𝑍𝑖

)︁
𝐷𝑖,1

]︁
− E

[︀
ℓ ·𝐷⊤

𝑖,2𝜖𝑇 |𝑍
]︀

𝑖 = 𝑗

Cov(ℓ, 𝐷⊤
𝑖,1𝜖𝑇𝑖|𝑍𝑖

𝜖⊤𝑇𝑗 |𝑍𝑗
𝐷𝑗,1) 𝑖 ̸= 𝑗,

where 𝐷𝑖,𝑘 := ∇𝑘
𝛿𝑖
𝑠𝑖(𝑍𝑖; 𝛿𝑖)|𝛿=0, is the gradient of the shift function for 𝑘 = 1, and

the Hessian for 𝑘 = 2. Here, 𝑇𝑖(𝑊𝑖) is the sufficient statistic of P(𝑊𝑖|𝑍𝑖) and

𝜖𝑇𝑖|𝑍𝑖
:= 𝑇𝑖(𝑊𝑖)− E[𝑇 (𝑊𝑖)|𝑍𝑖].

Proof. For simplicity throughout, we use ℎ
(1)
𝑖 to denote the gradient of the log-partition
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function ∇ℎ𝑖(·) with respect to the arguments, which is a column vector of length 𝑑𝑇𝑖
,

and we use ℎ
(2)
𝑖 to denote the Hessian ∇2ℎ𝑖(·), which is a matrix of size 𝑑𝑇𝑖

× 𝑑𝑇𝑖
. We

also use 𝜂𝛿𝑖(𝑧𝑖) as short-hand for 𝜂𝑖(𝑧𝑖) + 𝑠𝑖(𝑧𝑖; 𝛿𝑖).

Shift Gradient: By Definition 6.4, the probability density / mass function P𝛿 factorizes

as follows, where 𝛿 = (𝛿1, . . . , 𝛿𝑚)

P𝛿(V) =

(︃ ∏︁
𝑊𝑖∈W

P𝛿𝑖(𝑊𝑖|𝑍𝑖)

)︃⎛⎝ ∏︁
𝑉𝑖∈V∖W

P(𝑉𝑖|PA(𝑉𝑖))

⎞⎠ , (D.9)

and the gradient with respect to shift parameters 𝛿𝑖 is given by

∇𝛿𝑖𝑝𝛿(𝑣) = 𝑝𝛿(𝑣)∇𝛿𝑖 log 𝑝𝛿(𝑣) = 𝑝𝛿(𝑣)∇𝛿𝑖 log 𝑝𝛿𝑖(𝑤𝑖|𝑧𝑖)

where the last equality follows from additivity of the log-likelihood in the conditionals,

the factorization above, and the fact that 𝛿𝑖 only enters into the given conditional

distribution. Given the assumed form of log 𝑝𝛿𝑖(𝑤𝑖|𝑧𝑖) given in Definition 6.3, we can

observe that

∇𝛿𝑖 log 𝑝𝛿𝑖(𝑤𝑖|𝑧𝑖) = ∇𝛿𝑖

[︁
(𝜂𝑖(𝑧𝑖) + 𝑠𝑖(𝑧𝑖; 𝛿𝑖))

⊤𝑇𝑖(𝑤𝑖)− ℎ𝑖(𝜂(𝑧𝑖) + 𝑠𝑖(𝑧𝑖; 𝛿𝑖))
]︁

= (∇𝛿𝑖𝑠𝑖(𝑧𝑖; 𝛿𝑖))
⊤𝑇𝑖(𝑤𝑖)− (∇𝛿𝑖𝑠𝑖(𝑧𝑖; 𝛿𝑖))

⊤∇ℎ𝑖(𝜂(𝑧𝑖) + 𝑠𝑖(𝑧𝑖; 𝛿𝑖))

= (∇𝛿𝑖𝑠𝑖(𝑧𝑖; 𝛿𝑖))
⊤(𝑇𝑖(𝑤𝑖)− ℎ

(1)
𝑖 (𝜂𝛿𝑖(𝑧𝑖))) (D.10)

where ∇𝛿𝑖𝑠𝑖(𝑧𝑖; 𝛿𝑖) ∈ R𝑑𝑇𝑖×𝑑𝛿𝑖 , and ∇ℎ𝑖(𝜂(𝑧𝑖) + 𝑠𝑖(𝑧𝑖; 𝛿𝑖)) is the gradient of the function

ℎ𝑖 : R𝑑𝑇𝑖 → R, which is a column vector of length 𝑑𝑇𝑖
. It follows from known

properties of the log-partition function (Wainwright et al., 2008, Proposition 3.1), that

ℎ
(1)
𝑖 (𝜂𝛿𝑖(𝑧𝑖)) = E𝛿[𝑇𝑖(𝑊𝑖)|𝑧𝑖]. This gives us that

∇𝛿𝑖E𝛿[ℓ] = E𝛿

[︁
ℓ · (∇𝛿𝑖𝑠𝑖(𝑍𝑖; 𝛿𝑖))

⊤(𝑇𝑖(𝑊𝑖)− E𝛿[𝑇𝑖(𝑊𝑖)|𝑍𝑖])
]︁

= E𝛿

[︁
(∇𝛿𝑖𝑠𝑖(𝑍𝑖; 𝛿𝑖))

⊤E𝛿[ℓ · (𝑇𝑖(𝑊𝑖)− E𝛿[𝑇𝑖(𝑊𝑖)|𝑍𝑖])|𝑍𝑖]
]︁

= E𝛿

[︁
(∇𝛿𝑖𝑠𝑖(𝑍𝑖; 𝛿𝑖))

⊤Cov𝛿(ℓ, 𝑇𝑖(𝑊𝑖)|𝑍𝑖)
]︁
,
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where the second equality follows from the tower property and 𝑍𝑖-measurability of

∇𝛿𝑖𝑠𝑖(𝑍𝑖; 𝛿𝑖), and the final equality follows from the definition of the conditional

covariance. This expression, evaluated at 𝛿 = 0, gives us the desired result, that

SG1
𝑖 := ∇𝛿𝑖E𝛿[ℓ]

⃒⃒
𝛿=0

= E
[︀
𝐷⊤

𝑖,1Cov(ℓ, 𝑇𝑖(𝑊𝑖)|𝑍𝑖)
]︀
,

where 𝐷𝑖,1 = ∇𝛿𝑖𝑠𝑖(𝑍𝑖, 𝛿𝑖)|𝛿=0. The result follows from the definition that gradients

are taken entry-wise, giving SG1 = (SG1
1, . . . , SG

1
𝑚) ∈ R𝑑𝛿1+···𝑑𝛿𝑚 .

Shift Hessian (Diagonal): For the shift Hessian, we first compute the diagonal entries

of ∇2
𝛿E𝛿[ℓ]|𝛿=0, which are blocks of size R𝑑𝛿𝑖×𝑑𝛿𝑖 . We begin by computing the Hessian

of the likelihood.

∇2
𝛿𝑖
𝑝𝛿(𝑣)

= ∇𝛿𝑖

(︂
𝑝𝛿(𝑣)∇𝛿𝑖 log 𝑝𝛿𝑖(𝑤𝑖|𝑧𝑖)

)︂
= 𝑝𝛿(𝑣)

(︂
(∇𝛿𝑖 log 𝑝𝛿𝑖(𝑤𝑖|𝑧𝑖))⊗2 +∇2

𝛿𝑖
log 𝑝𝛿𝑖(𝑤𝑖|𝑧𝑖)

)︂
= 𝑝𝛿(𝑣)

(︂
{∇𝛿𝑖𝑠𝑖(𝑧𝑖; 𝛿𝑖)}⊤

(︀
𝑇𝑖(𝑤𝑖)− ℎ

(1)
𝑖 (𝜂𝛿𝑖(𝑧𝑖))

)︀⊗2{∇𝛿𝑖𝑠𝑖(𝑧𝑖; 𝛿𝑖)}

− {∇2
𝛿𝑖
𝑠𝑖(𝑧𝑖; 𝛿𝑖)}⊤(𝑇𝑖(𝑤𝑖)− ℎ

(1)
𝑖 (𝜂𝛿𝑖(𝑧𝑖)))

− {∇𝛿𝑖𝑠𝑖(𝑧𝑖; 𝛿𝑖)}⊤ℎ
(2)
𝑖 (𝜂𝛿𝑖(𝑧𝑖)){∇𝛿𝑖𝑠𝑖(𝑧𝑖; 𝛿𝑖)}

)︂
,

= 𝑝𝛿(𝑣)

(︂
{∇𝛿𝑖𝑠𝑖(𝑧𝑖; 𝛿𝑖)}⊤

(︂(︀
𝑇𝑖(𝑤𝑖)− ℎ

(1)
𝑖 (𝜂𝛿𝑖(𝑧𝑖))

)︀⊗2 − ℎ
(2)
𝑖 (𝜂𝛿𝑖(𝑧𝑖))

)︂
{∇𝛿𝑖𝑠𝑖(𝑧𝑖; 𝛿𝑖)}

− {∇2
𝛿𝑖
𝑠𝑖(𝑧𝑖; 𝛿𝑖)}⊤

(︀
𝑇𝑖(𝑤𝑖)− ℎ

(1)
𝑖 (𝜂𝛿𝑖(𝑧𝑖))

)︀)︂

where we use the notation 𝑣⊗2 := 𝑣𝑣⊤, and we note that ∇2
𝛿𝑖
𝑠(𝑧𝑖; 𝛿𝑖) is a tensor of

size 𝑑𝑇𝑖
× 𝑑𝛿𝑖 × 𝑑𝛿𝑖 , and {∇2

𝛿𝑖
𝑠𝑖(𝑧𝑖; 𝛿𝑖)}⊤ℎ(1)

𝑖 (·) is a matrix of size 𝑑𝛿𝑖 × 𝑑𝛿𝑖 , where the

(𝑚,𝑛)’th entry is { 𝜕
𝜕𝛿𝑖𝑚

𝜕
𝜕𝛿𝑖𝑛

𝑠(𝑧𝑖; 𝛿𝑖)}⊤ℎ(1)(·).

Now, using the fact that ℎ(1)(𝜂𝛿𝑖(𝑧)) = E𝛿[𝑇𝑖(𝑊𝑖)|𝑧𝑖] and ℎ(2)(𝜂𝛿𝑖(𝑧𝑖)) = Var𝛿[𝑇𝑖(𝑊𝑖)|𝑧𝑖]

(Wainwright et al., 2008, Proposition 3.1), and the definition 𝜖𝑇𝑖|𝑍𝑖
= 𝑇𝑖(𝑊𝑖) −
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E𝛿[𝑇𝑖(𝑊𝑖)|𝑍𝑖], we obtain

∇2
𝛿𝑖
E𝛿[ℓ]

= E𝛿

[︂
ℓ · {∇𝛿𝑖𝑠𝑖(𝑍𝑖; 𝛿𝑖)}⊤

(︂
𝜖⊗2
𝑇 |𝑍𝑖
− Var𝛿(𝑇𝑖(𝑊𝑖)|𝑍𝑖)

)︂
{∇𝛿𝑖𝑠𝑖(𝑍𝑖; 𝛿𝑖)}

]︂
− E𝛿

[︀
ℓ · {∇2

𝛿𝑖
𝑠𝑖(𝑍𝑖; 𝛿𝑖)}⊤𝜖𝑇𝑖|𝑍𝑖

]︀
= E𝛿

[︂
{∇𝛿𝑖𝑠𝑖(𝑍𝑖; 𝛿𝑖)}⊤Cov𝛿

(︂
ℓ, 𝜖⊗2

𝑇𝑖|𝑍𝑖

⃒⃒⃒⃒
𝑍𝑖

)︂
{∇𝛿𝑖𝑠𝑖(𝑍𝑖; 𝛿𝑖)}

]︂
− E𝛿

[︀
ℓ · {∇2

𝛿𝑖
𝑠𝑖(𝑍𝑖; 𝛿𝑖)}⊤𝜖𝑇𝑖|𝑍𝑖

]︀
which gives the desired result when we evaluate at 𝛿 = 0.

Shift Hessian (Off-Diagonal) For 𝑖 ̸= 𝑗, we have that

∇𝛿𝑖∇𝛿𝑗𝑝𝛿(𝑣)

= ∇𝛿𝑖(𝑝𝛿(𝑣)∇𝛿𝑗 log 𝑝𝛿𝑗(𝑤𝑗|𝑧𝑗))

= ∇𝛿𝑖(𝑝𝛿(𝑣)∇𝛿𝑗 log 𝑝𝛿𝑗(𝑤𝑗|𝑧𝑗))

= 𝑝𝛿(𝑣)∇𝛿𝑖 log 𝑝𝛿𝑖(𝑤𝑖|𝑧𝑖)
(︀
∇𝛿𝑗 log 𝑝𝛿𝑗(𝑤𝑗|𝑧𝑗)

)︀⊤
= 𝑝𝛿(𝑣)

(︂
{∇𝛿𝑖𝑠𝑖(𝑧𝑖; 𝛿𝑖)}

⊤(𝑇𝑖(𝑤𝑖)− ℎ
(1)
𝑖 (𝜂𝛿𝑖(𝑧𝑖)))

)︂
(︂
{∇𝛿𝑗𝑠𝑗(𝑧𝑗; 𝛿𝑗)}

⊤(𝑇𝑗(𝑤𝑗)− ℎ
(1)
𝑗 (𝜂𝛿𝑗(𝑧𝑗)))

)︂⊤

where the third line follows from the fact that ∇𝛿𝑖(∇𝛿𝑗 log 𝑝𝛿𝑗 (𝑤𝑗|𝑧𝑗)) = 0, and the last

line follows from the derivation of the gradient of the log-likelihood in Equation (D.10).

We can again use the fact that ℎ
(1)
𝑖 (𝜂𝛿𝑖(𝑍𝑖)) = E𝛿[𝑇𝑖(𝑊𝑖)|𝑍𝑖] and the shorthand

𝜖𝑇𝑖|𝑍𝑖
:= 𝑇𝑖(𝑊𝑖)− E𝛿[𝑇𝑖(𝑊𝑖)|𝑍𝑖] to write that

∇𝛿𝑖∇𝛿𝑗E𝛿[ℓ]

= E𝛿

[︂
ℓ · {∇𝛿𝑖𝑠𝑖(𝑧𝑖; 𝛿𝑖)}

⊤
(︂
(𝑇𝑖(𝑤𝑖)− ℎ

(1)
𝑖 (𝜂𝛿𝑖(𝑧𝑖)))

)︂
(︂
(𝑇𝑗(𝑤𝑗)− ℎ

(1)
𝑗 (𝜂𝛿𝑗(𝑧𝑗)))

)︂⊤

{∇𝛿𝑗𝑠𝑗(𝑧𝑗; 𝛿𝑗)}
]︂
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and when we evaluate this expression at 𝛿 = 0, we obtain

∇𝛿𝑖∇𝛿𝑗E𝛿[ℓ]
⃒⃒
𝛿=0

= E
[︀
ℓ ·𝐷⊤

𝑖,1𝜖𝑇𝑖|𝑍𝑖
(𝜖𝑇𝑗 |𝑍𝑗

)⊤𝐷𝑗,1

]︀
= Cov(ℓ,𝐷⊤

𝑖,1𝜖𝑇𝑖|𝑍𝑖
𝜖⊤𝑇𝑗 |𝑍𝑗

𝐷𝑗,1).

Where the last equality follows because E[𝐷⊤
𝑖,1𝜖𝑇𝑖|𝑍𝑖

𝜖⊤𝑇𝑗 |𝑍𝑗
𝐷𝑗,𝑖] = 0. To see this, note

that one of 𝑊𝑖,𝑊𝑗 must be a non-descendant of the other, and we will assume without

loss of generality that 𝑊𝑗 is a non-descendant of 𝑊𝑖 in the causal graph consistent with

the factorization given in Equation (D.9), which implies that 𝑍𝑗 (the parents of 𝑊𝑗 in

the underlying graph) are also non-descendants of 𝑊𝑖.Thus, 𝑊𝑖 ⊥⊥ (𝑊𝑗 , 𝑍𝑗)|𝑍𝑖, because

(𝑊𝑗, 𝑍𝑗) are both non-descendants of 𝑊𝑖. Then, observe that 𝐷𝑖,1 is a function of 𝑍𝑖,

and 𝜖𝑇𝑖|𝑍𝑖
is a variable with zero-mean conditioned on 𝑍𝑖. Thus, E[𝐷⊤

𝑖,1𝜖𝑇𝑖|𝑍𝑖
|𝑍𝑖] = 0,

for all 𝑍𝑖. Moreover, given 𝑍𝑖, we have that 𝐷⊤
𝑖,1𝜖𝑇𝑖|𝑍𝑖

is independent of 𝐷⊤
𝑗,1𝜖𝑇𝑗 |𝑍𝑗

. As

a result, we can write that

E[𝐷⊤
𝑖,1𝜖𝑇𝑖|𝑍𝑖

𝜖⊤𝑇𝑗 |𝑍𝑗
𝐷𝑗,1] = E[E[𝐷⊤

𝑖,1𝜖𝑇𝑖|𝑍𝑖
𝜖⊤𝑇𝑗 |𝑍𝑗

𝐷𝑗,1|𝑍𝑖]]

= E[E[𝐷⊤
𝑖,1𝜖𝑇𝑖|𝑍𝑖

|𝑍𝑖]E[𝜖⊤𝑇𝑗 |𝑍𝑗
𝐷𝑗,1|𝑍𝑖]]

= E[0 · E[𝜖⊤𝑇𝑗 |𝑍𝑗
𝐷𝑗,1|𝑍𝑖]]

= 0

D.7.3 Proof of Corollary 6.1

Corollary 6.1 (Simple shift in a single variable). Assume the setup of Theorem 6.1,

restricted to a shift in a single variable 𝑊 , and that 𝑠(𝑍; 𝛿) = 𝛿. Then 𝐷1 = 1, 𝐷2 = 0,

and

SG1 = E
[︂
Cov

(︂
ℓ, 𝑇 (𝑊 )

⃒⃒⃒⃒
𝑍

)︂]︂
and SG2 = E

[︂
Cov

(︂
ℓ, 𝜖𝑇 |𝑍𝜖

⊤
𝑇 |𝑍

⃒⃒⃒⃒
𝑍

)︂]︂
,

where 𝑇 (𝑊 ) is the sufficient statistic of 𝑊 and 𝜖𝑇 |𝑍 := 𝑇 (𝑊 )− E[𝑇 (𝑊 )|𝑍].
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Proof. We have ∇𝛿𝑠(𝑍; 𝛿) = ∇𝛿𝛿 = 1 and ∇2
𝛿𝑠(𝑍; 𝛿) = ∇2

𝛿𝛿 = 0. The result now

follows from Theorem 6.1.

D.7.4 Proof of Theorem 6.2

Theorem 6.2. Assume that P𝛿,P satisfy the conditions of Theorem 6.1, with a shift in

a single variable 𝑊 , where 𝑠(𝑍; 𝛿) = 𝛿. Let 𝐸𝛿,Taylor be the population Taylor estimate

(Equation (6.7)) and let 𝜎(𝑀) denote the largest absolute value of the eigenvalues of a

matrix 𝑀 . Then⃒⃒⃒⃒
E𝛿[ℓ]− 𝐸𝛿,Taylor

⃒⃒⃒⃒
≤ 1

2
sup
𝑡∈[0,1]

𝜎

(︂
Cov𝑡·𝛿(ℓ, 𝜖𝑡·𝛿,𝑇 |𝑍𝜖

⊤
𝑡·𝛿,𝑇 |𝑍)− Cov(ℓ, 𝜖0,𝑇 |𝑍𝜖

⊤
0,𝑇 |𝑍)

)︂
· ‖𝛿‖2,

where 𝑇 (𝑊 ) is the sufficient statistic of 𝑊 |𝑍 and 𝜖𝑡·𝛿,𝑇 |𝑍 = 𝑇 (𝑊 |𝑍)− E𝑡·𝛿[𝑇 (𝑊 |𝑍)].

Proof. The expectation is continuous and twice-differentiable with respect to 𝛿, because

of the smoothness of the exponential family in the parameter, the fact that the shift

function 𝑠 is twice-differentiable, and because the support does not change. Thus,

applying Taylors remainder theorem to the function 𝑡 ↦→ E𝑡·𝛿[ℓ], it follows that there

exist a 𝑡0 ∈ [0, 1] such that

E1·𝛿[ℓ]− E0·𝛿[ℓ]−
(︂

d
d𝑡
E𝑡·𝛿[ℓ]

)︂⃒⃒⃒⃒
𝑡=0

=

(︂
1
2

d2

d2𝑡
E𝑡·𝛿[ℓ]

)︂⃒⃒⃒⃒
𝑡=𝑡0

. (D.11)

We have

(︂
d
d𝑡
E𝑡·𝛿[ℓ]

)︂⃒⃒⃒⃒
𝑡=0

= SG1 and by the same arguments (see the proof of Theo-

rem 6.1), it follows that

(︂
1
2

d2

d2𝑡
E𝑡·𝛿[ℓ]

)︂⃒⃒⃒⃒
𝑡=𝑡0

= 𝛿⊤Cov𝑡0·𝛿(ℓ, 𝜖
⊗2
𝑡0·𝛿,𝑇 |𝑍)𝛿. Plugging this in,

and subtracting 1
2
𝛿⊤ SG2 𝛿 on both sides of Equation (D.11) yields⃒⃒⃒⃒

E𝛿[ℓ]− 𝐸𝛿,Taylor

⃒⃒⃒⃒
= 1

2

⃒⃒⃒⃒
𝛿⊤
(︂
Cov𝑡0·𝛿(ℓ, 𝜖

⊗2
𝑡0·𝛿,𝑇 |𝑍)− Cov(ℓ, 𝜖⊗2

0,𝑇 |𝑍)

)︂
𝛿

⃒⃒⃒⃒
≤ 1

2
sup
𝑡∈[0,1]

⃒⃒⃒⃒
𝛿⊤
(︂
Cov𝑡·𝛿(ℓ, 𝜖

⊗2
𝑡·𝛿,𝑇 |𝑍)− Cov(ℓ, 𝜖⊗2

0,𝑇 |𝑍)

)︂
𝛿

⃒⃒⃒⃒
.
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Let 𝐾 :=

(︂
Cov𝑡·𝛿(ℓ, 𝜖

⊗2
𝑡·𝛿,𝑇 |𝑍)− Cov(ℓ, 𝜖⊗2

0,𝑇 |𝑍)

)︂
. Since 𝐾 is symmetric and real valued,

it is diagonalizeable, 𝐾 = 𝑈⊤Λ𝑈 for an orthonormal matrix 𝑈 and diagonal matrix

Λ = diag(𝛼1, . . . , 𝛼𝑑). We then have

|𝛿⊤𝐾𝛿| = |𝛿⊤𝑈⊤Λ𝑈𝛿|

= |(Λ1/2𝑈𝛿)⊤(Λ1/2𝑈𝛿)|

= ‖Λ1/2𝑈𝛿‖22

≤ ‖Λ1/2‖22‖𝑈𝛿‖22

= 𝜎(𝐾)‖𝛿‖22,

where Λ1/2 = diag(
√
𝛼1, . . . ,

√
𝛼𝑑), ‖ · ‖2 denotes the supremum-norm when applied

to matrices and the 2-norm when applied to vectors and ‖𝑈𝛿‖2 = ‖𝛿‖2 because

‖𝑈𝛿‖22 = 𝛿⊤𝑈⊤𝑈𝛿 = 𝛿⊤𝛿 = ‖𝛿‖22, using orthonormality of 𝑈 . Plugging in this

inequality, we get that⃒⃒⃒⃒
E𝛿[ℓ]− 𝐸𝛿,Taylor

⃒⃒⃒⃒
≤ 1

2
sup
𝑡∈[0,1]

𝜎

(︂
Cov𝑡·𝛿(ℓ, 𝜖

⊗2
𝑡·𝛿,𝑇 |𝑍)− Cov(ℓ, 𝜖⊗2

0,𝑇 |𝑍)

)︂
‖𝛿‖22,

which concludes the proof.

D.7.5 Proof of Proposition D.2.1

Proposition D.2.1. Consider a binary random variable 𝑊 with conditional distribution

P𝛿(𝑊 = 1|𝑍) = 𝜎(𝜂(𝑍) + 𝛿)

for an arbitrary measurable function 𝜂(𝑍) whose range is the extended real numbers

𝜂(𝑍) ∈ R∪{+∞,−∞}. Let 𝑝+ := P(𝜂(𝑍) = +∞), 𝑝− := P(𝜂(𝑍) = −∞), and assume

that 𝑝+ + 𝑝− < 1. Then, the marginal probability

𝑝𝛿 = P𝛿(𝑊 = 1)
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is a strictly monotonically increasing function of 𝛿 ∈ R whose range is (𝑝+, 1− 𝑝−),

Proof. Let 𝐹 denote the event that 𝜂(𝑍) is finite (i.e., 𝜂(𝑍) ̸∈ {−∞,+∞}). Under 𝐹 ,

the conditional probability function 𝜎(𝜂(𝑍) + 𝛿) is a strictly monotonically increasing

function of 𝛿, and if 𝜂(𝑍) ∈ {−∞,+∞}, then the conditional probability is a constant

function of 𝛿 (zero or one, respectively). Hence, we can write that

P𝛿(𝑊 = 1) = P𝛿(𝑊 = 1|𝐹 )(1− 𝑝+ − 𝑝−) + 𝑝+

and by assumption, 1 − 𝑝+ − 𝑝− > 0. The marginal probability P𝛿(𝑊 = 1|𝐹 ) is a

strictly monotonically increasing function of 𝛿, with a limit of 1 as 𝛿 →∞, and a limit

of 0 as 𝛿 → −∞. As a result, it is bounded in (𝑝+, 1− 𝑝−).

D.7.6 Proof of Lemma D.3.1

Lemma D.3.1. Suppose 𝐴 ∼ 𝒩 (𝜇,Σ) and that (𝑋,𝑌,𝐻) are generated according to

Equation (D.2). For 𝛾 ∈ R𝑑𝑋 define ℓ := (𝑌 − 𝛾⊤𝑋)2. Then there exist 𝑣𝛾 , 𝑢𝜇,𝛾 ∈ R𝑑𝐴

such that for all shifts 𝛿 ∈ R𝑑𝐴:

E𝛿[ℓ] = E[ℓ] + 𝛿⊤𝑢𝜇,𝛾 +
1
2
𝛿⊤𝑣𝛾𝑣

⊤
𝛾 𝛿,

where E𝛿 corresponds to taking the mean in the distribution where 𝐴 ∼ 𝒩 (𝜇+ 𝛿,Σ).

Further 𝑢𝜇,𝛾 = 0 if 𝜇 = 0.

Proof. It follows from Equation (D.2) that one can write (𝑋⊤, 𝑌 ⊤, 𝐻⊤) = (1 −

𝐵)−1(𝑀𝐴+ 𝜖), and for a given 𝛾, there exist 𝑏𝛾 , 𝜅𝛾 such that 𝑌 − 𝛾⊤𝑋 = 𝑏⊤𝛾 𝐴+ 𝜅⊤
𝛾 𝜖

(Rothenhäusler et al., 2021). In P𝛿, we can write 𝐴 = 𝜇+ 𝛿 + 𝜖𝐴, where 𝜖𝐴 ∼ 𝒩 (0,Σ),

for all values of 𝜇 and 𝛿. Plugging this in yields

E𝛿[(𝑌 − 𝛾⊤𝑋)2] = E𝛿[(𝑏
⊤
𝛾 𝐴+ 𝜅⊤

𝛾 𝜖)
2]

= E𝛿[(𝑏
⊤
𝛾 (𝜇+ 𝛿 + 𝜖𝐴) + 𝜅⊤

𝛾 𝜖)
2]
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= E[(𝑏⊤𝛾 (𝜇+ 𝜖𝐴) + 𝜅⊤𝜖)2] + (2𝑏⊤𝛾 𝜇)𝛿
⊤𝑏𝛾 + 𝛿⊤𝑏𝛾𝑏

⊤
𝛾 𝛿

= E[(𝑌 − 𝛾⊤𝑋)2] + (2𝑏⊤𝛾 𝜇)𝛿
⊤𝑏𝛾 + 𝛿⊤𝑏𝛾𝑏

⊤
𝛾 𝛿.

where we do not put a subscript on the expectation in the third line because it is

taking expectations over 𝜖𝐴 and 𝜖, both which do not depend on the choice of 𝜇 and 𝛿.

The statement of the lemma follows by letting 𝑢𝜇,𝛾 = 2𝑏⊤𝛾 𝜇 and 𝑣𝛾 =
√
2𝑏𝛾.

D.7.7 Proof of Proposition D.3.1

Proposition D.3.1. Suppose 𝐴 ∼ 𝒩 (𝜇,Σ) and that (𝑋, 𝑌,𝐻) are generated according

to Equation (D.2). Then the shift gradient and Hessian are given by

SG1 = Cov(ℓ,Σ−1𝐴) and SG2 = Cov(ℓ,Σ−1(𝐴− 𝜇)(𝐴− 𝜇)⊤Σ−⊤)

and the loss under a mean shift of 𝛿 in 𝐴 is given by

E𝛿[ℓ] = E[ℓ] + 𝛿⊤ SG1+1
2
𝛿⊤ SG2 𝛿,

where ℓ := (𝑌 − 𝛾⊤𝑋)2 and E𝛿 corresponds to taking the mean in the distribution

where 𝐴 ∼ 𝒩 (𝜇+ 𝛿,Σ).

Proof. Similar to Lemma D.3.1, we rewrite 𝑌 − 𝛾⊤𝑋 = 𝑏⊤𝛾 𝐴+ 𝜅⊤𝜖, and by rewriting

𝐴 = 𝜇+ 𝛿 + 𝜖𝐴, where 𝜖𝐴 ∼ 𝒩 (0,Σ), we obtain

E𝛿[(𝑌 − 𝛾⊤𝑋)2] = E(𝑏⊤𝛾 (𝜇+ 𝜖𝐴) + 𝜅⊤𝜖)2 (D.12)

+ (2𝑏⊤𝛾 𝜇)𝛿
⊤𝑏 (D.13)

+ 𝛿⊤𝑏𝑏⊤𝛿. (D.14)

We recognize that Equation (D.12) equals E(𝑌 − 𝛾⊤𝑋)2. Similarly, we now show that

Equations (D.13) and (D.14) match the shift gradients (multiplied appropriately with

𝛿).
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First, we assume that Σ = Id. Since 𝐴 is a Gaussian with (known) mean Id, the

sufficient statistic is 𝑇 (𝐴) = 𝐴. Hence, according to Theorem 6.1, we can compute

the shift gradient as

SG1 = Cov(𝐴, ℓ) = Cov(𝐴, (𝑌 − 𝛾⊤𝑋)2) = Cov(𝐴, (𝑏⊤𝛾 𝐴)
2).

We can calculate the 𝑖’th entrance of this vector as:

SG1 = Cov(𝐴𝑖, (𝑏
⊤
𝛾 𝐴)

2) = Cov(𝐴𝑖 − 𝜇𝑖, (𝑏
⊤
𝛾 𝐴)

2))

= Cov(𝐴𝑖 − 𝜇𝑖, 𝑏
2
𝛾,𝑖𝐴

2
𝑖 + 2

∑︁
𝑗 ̸=𝑖

𝑏𝑖𝑏𝑗𝐴𝑖𝐴𝑗)

= 𝑏2𝛾,𝑖Cov(𝐴𝑖 − 𝜇𝑖, 𝐴
2
𝑖 ) + 2𝑏𝛾,𝑖

∑︁
𝑗 ̸=𝑖

𝑏𝑗Cov(𝐴𝑖 − 𝜇𝑖, 𝐴𝑖𝐴𝑗),

where in the first equality we use that subtracting a constant doesn’t change the

covariance, and we use independence of 𝐴𝑖 from 𝐴𝑗𝐴𝑗′ when 𝑖 /∈ {𝑗, 𝑗′}. Using the

assumption that 𝐴𝑖 has unit variance, we now get that

Cov(𝐴𝑖 − 𝜇𝑖, 𝐴
2
𝑖 ) = E[𝐴3

𝑖 − 𝜇𝑖𝐴
2
𝑖 ] = (𝜇3

𝑖 + 3𝜇𝑖)− 𝜇𝑖(𝜇
2
𝑖 + 1) = 2𝜇𝑖

Cov(𝐴𝑖 − 𝜇𝑖, 𝐴𝑖𝐴𝑗) = E[𝐴2
𝑖 − 𝐴𝑖𝜇𝑖]E[𝐴𝑗] = (𝜇2

𝑖 + 1− 𝜇2
𝑖 )𝜇𝑗 = 𝜇𝑗.

By plugging in, we obtain

SG1(𝜇𝑖) = 2𝑏2𝛾,𝑖𝜇𝑖 + 2𝑏𝛾,𝑖
∑︁
𝑗 ̸=𝑖

𝑏𝑗𝜇𝑗

= 2𝑏𝛾,𝑖𝑏
⊤
𝛾 𝜇.

Since this was element-wise, we obtain that the full vector is SG1 = 2𝑏𝛾𝑏
⊤
𝛾 𝜇, which,

when multiplied with 𝛿 yields Equation (D.13).

We compute SG2 similarly. The diagonal entries are given by

SG2
𝑖,𝑖 = Cov((𝐴𝑖 − 𝜇𝑖)

2, (𝑏⊤𝛾 𝐴)
2)
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= Cov((𝐴𝑖 − 𝜇𝑖)
2, 𝑏2𝛾,𝑖𝐴

2
𝑖 + 𝑏𝛾,𝑖

∑︁
𝑗 ̸=𝑖

𝑏𝛾,𝑗𝐴𝑖𝐴𝑗)

= 𝑏2𝛾,𝑖Cov((𝐴𝑖 − 𝜇𝑖)
2, 𝐴2

𝑖 ) + 𝑏𝛾,𝑖
∑︁
𝑗 ̸=𝑖

𝑏𝛾,𝑗Cov((𝐴𝑖 − 𝜇𝑖)
2, 𝐴𝑖𝐴𝑗).

Because Σ = Id, the second through fourth moments of 𝐴𝑖 are given by E[𝐴2
𝑖 ] = 𝜇2

𝑖 +1,

E[𝐴3
𝑖 ] = 𝜇3

𝑖 + 3𝜇𝑖 and E[𝐴4
𝑖 ] = 𝜇4

𝑖 + 6𝜇2
𝑖 + 3. Using this, we get

Cov((𝐴𝑖 − 𝜇𝑖)
2, 𝐴2

𝑖 ) = E[𝐴4
𝑖 − 2𝜇𝑖𝐴

3
𝑖 + 𝜇2

𝑖𝐴
2
𝑖 ]− E[(𝐴𝑖 − 𝜇𝑖)

2]E[𝐴2
𝑖 ]

= (𝜇4
𝑖 + 6𝜇2

𝑖 + 3)− 2𝜇𝑖(𝜇
3
𝑖 + 3𝜇𝑖) + 𝜇2

𝑖 (𝜇
2
𝑖 + 1)− 1 · (𝜇2

𝑖 + 1)

= 2,

and for 𝑗 ̸= 𝑖:

Cov((𝐴𝑖 − 𝜇𝑖)
2, 𝐴𝑖𝐴𝑗) = Cov((𝐴𝑖 − 𝜇𝑖)

2, (𝐴𝑖 − 𝜇𝑖)𝐴𝑗) + Cov((𝐴𝑖 − 𝜇𝑖)
2, 𝜇𝑖𝐴𝑗)

= Cov((𝐴𝑖 − 𝜇𝑖)
2, (𝐴𝑖 − 𝜇𝑖)𝐴𝑗)

= E[(𝐴𝑖 − 𝜇𝑖)
3]E[𝐴𝑗]− E[(𝐴𝑖 − 𝜇𝑖)

2]E[(𝐴𝑖 − 𝜇𝑖)]E[𝐴𝑗]

= 0− 0,

using linearity of the covariance, that 𝐴𝑖 ⊥⊥ 𝐴𝑗 and that the first and third moments

are zero for a centered Gaussian 𝐴𝑖 − 𝜇𝑖. Plugging this in, we get that the diagonal

entries are given by

SG2
𝑖,𝑖 = 2𝑏2𝛾,𝑖.

We can compute the off-diagonal entries similarly. For 𝑖 ̸= 𝑗, we have:

SG2
𝑖,𝑗 = Cov

(︂
(𝐴𝑖 − 𝜇𝑖)(𝐴𝑗 − 𝜇𝑗), (D.15)

𝑏2𝛾,𝑖𝐴
2
𝑖 + 𝑏2𝛾,𝑗𝐴

2
𝑗 + 2𝑏𝛾,𝑖𝑏𝛾,𝑗𝐴𝑖𝐴𝑗 + 2

∑︁
𝑣/∈{𝑖,𝑗}

𝑏𝛾,𝑖𝑏𝛾,𝑣𝐴𝑖𝐴𝑣 + 𝑏𝛾,𝑗𝑏𝛾,𝑣𝐴𝑗𝐴𝑣

)︂
.
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Using the independence of 𝐴𝑖 and 𝐴𝑗, we have

Cov((𝐴𝑖 − 𝜇𝑖)(𝐴𝑗 − 𝜇𝑗), 𝐴
2
𝑖 )

= E[𝐴2
𝑖 (𝐴𝑖 − 𝜇𝑖)]E[𝐴𝑗 − 𝜇𝑗]⏟  ⏞  

=0

−E[𝐴𝑖 − 𝜇𝑖]⏟  ⏞  
=0

E[𝐴𝑗 − 𝜇𝑗]E[𝐴2
𝑖 ]

= 0,

and similarly Cov((𝐴𝑖−𝜇𝑖)(𝐴𝑗−𝜇𝑗), 𝐴
2
𝑗) = 0. Using the same reasoning, for 𝑣 /∈ {𝑖, 𝑗}

Cov((𝐴𝑖 − 𝜇𝑖)(𝐴𝑗 − 𝜇𝑗), 𝐴𝑖𝐴𝑣)

= E[(𝐴𝑖 − 𝜇𝑖)𝐴𝑖]E[𝐴𝑗 − 𝜇𝑗]E[𝐴𝑣]− E[(𝐴𝑖 − 𝜇𝑖)]E[𝐴𝑖]E[𝐴𝑗 − 𝜇𝑗]E[𝐴𝑣]

= 0,

and the same for Cov((𝐴𝑖 − 𝜇𝑖)(𝐴𝑗 − 𝜇𝑗), 𝐴𝑗𝐴𝑣). Finally, we have

Cov((𝐴𝑖 − 𝜇𝑖)(𝐴𝑗 − 𝜇𝑗), 𝐴𝑖𝐴𝑗)

= E[(𝐴𝑖 − 𝜇𝑖)𝐴𝑖]E[(𝐴𝑗 − 𝜇𝑗)𝐴𝑗]− E[(𝐴𝑖 − 𝜇𝑖)]E[𝐴𝑖]E[(𝐴𝑗 − 𝜇𝑗)]E[𝐴𝑗]

= E[(𝐴𝑖 − 𝜇𝑖)𝐴𝑖]E[(𝐴𝑗 − 𝜇𝑗)𝐴𝑗]

= E[𝐴2
𝑖 − 𝜇𝑖𝐴𝑖]E[𝐴2

𝑗 − 𝜇𝑗𝐴𝑗]

= [(𝜇2
𝑖 + 1)− 𝜇2

𝑖 ][[(𝜇
2
𝑗 + 1)− 𝜇2

𝑗 ]]

= 1.

Plugging into Equation (D.15), we get that

SG2
𝑖,𝑗 = 2𝑏𝛾,𝑖𝑏𝛾,𝑗,

and hence for both diagonal and off-diagonal entries, SG2
𝑖,𝑗 = 2𝑏𝛾,𝑖𝑏𝛾,𝑗, implying that

SG2 = 2𝑏𝛾𝑏
⊤
𝛾 .

In particular 1
2
𝛿⊤ SG2 𝛿 matches Equation (D.14).
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Finally, we consider the case Σ ̸= Id. Let Σ−1/2 be the ‘square-root’ of Σ−1, such that

Σ−1/2Σ−⊤/2 (where the latter denotes (Σ−1/2)⊤.7

The sufficient statistics for the mean in a multivariate Gaussian distribution with

known variance is given by 𝑇 (𝐴) = Σ−1𝐴. We then have

SG1 = Cov(Σ−1𝐴, (𝑏⊤𝛾 𝐴)
2)

= Σ−1/2Cov(Σ−1/2𝐴, ((Σ1/2𝑏𝛾)
⊤Σ−1/2𝐴)2)

= Σ−1/2Cov�̃�(�̃�, (�̃�
⊤
𝛾 �̃�)

2),

where �̃� = Σ−1/2𝐴 =∼ 𝒩 (�̃�, Id), �̃� = Σ−1/2𝜇 and �̃�𝛾 = Σ1/2𝑏𝛾. In particular, since �̃�

has unit variance, we can use the above derivations to obtain

SG1 = 2Σ−1/2(�̃�𝛾 �̃�
⊤
𝛾 �̃�) = 2𝑏𝛾𝑏

⊤
𝛾 𝜇.

In particular, the first shift gradient is the when Σ ̸= Id as when Σ = Id. Similarly,

SG2 = Cov(Σ−1(𝐴− 𝜇)(𝐴− 𝜇)⊤Σ−⊤, (𝑏⊤𝛾 𝐴)
2)

= Cov(Σ−1/2Σ−1/2(𝐴− 𝜇)(𝐴− 𝜇)⊤Σ−⊤/2Σ−⊤/2, (Σ1/2𝑏𝛾)
⊤Σ−1/2𝐴)2)

= Σ−1/2Cov�̃�((�̃�− �̃�)(�̃�− �̃�)⊤, (�̃�
⊤
𝛾 �̃�)

2)Σ−⊤/2

= Σ−1/22�̃�𝛾 �̃�
⊤
𝛾 Σ

−⊤/2

= 2𝑏𝛾𝑏
⊤
𝛾 .

Hence, also when Σ ̸= Id, the terms of Equations (D.13) and (D.14) matches the

expression given by SG1 and SG2. This concludes the proof.

7Formally, if Σ−1 = 𝑈Λ𝑈⊤ where Λ = diag(𝜆1, . . . , 𝜆𝑑𝐴
), define Σ−1/2 := 𝑈 diag(

√
𝜆1, . . . ,

√︀
𝜆𝑑𝐴

).
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Appendix E

Appendix for Chapter 7

E.1 Details: Setup and Definition of Shifts

In the CelebA dataset, there are 40 distinct binary attributes for each image. To

evaluate the sensitivity of models to distribution shift, we first define a factorization

over the entire conditional distribution, based on our own categorization of these

attributes. We consider a factorization of the joint distribution as follows, where 𝑋 is

the image, and 𝐴 is the set of all attributes (including the label 𝑌 ). We use red to

indicate portions of the factorization which change.

𝑃 (𝐴,𝑋) = 𝑃 (𝐴)𝑃 (𝑋 | 𝐴), (E.1)

where 𝑃 denotes the probability mass function for discrete variables, and the probability

density function for continuous variables. We consider a structured shift in the

distribution of 𝑃 (𝐴), which we further factorize as follows, without assuming any

conditional independences, and where 𝐴1:𝑖−1 := (𝐴1, . . . , 𝐴𝑖−1), and where we adopt

the convention that 𝐴1:0 = ∅

𝑃 (𝐴) =

𝑑𝐴∏︁
𝑖=1

𝑃 (𝐴𝑖 | 𝐴1:𝑖−1). (E.2)
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For each conditional distribution 𝑃 (𝐴𝑖 | 𝐴1:𝑖), we define a set of possible conditional

distribution indexed by a parameter 𝛿 ∈ R𝑑𝐴 , where

𝑃𝛿(𝐴𝑖 = 1 | 𝐴1:𝑖) = 𝜎(𝜂𝑖(𝐴1:𝑖) + 𝛿𝑖). (E.3)

where 𝜂𝑖(𝐴1:𝑖−1) denotes the conditional log-odds log(𝑝/(1− 𝑝)) for 𝑝 := 𝑃 (𝐴𝑖 = 1 |

𝐴1:𝑖−1). This in turn defines a set of joint distributions

𝑃𝛿(𝐴,𝑋) = 𝑃𝛿(𝐴)𝑃 (𝑋 | 𝐴) (E.4)

where 𝑃𝛿(𝐴) is equal to the product of the shifted distributions. For a fixed predictive

model, we then seek to estimate the worst-case zero-one loss under a set of distributions

defined by 𝛿, recalling that 𝑌 is just one of the attributes

sup
‖𝛿‖2≤𝜆

E𝑋,𝑌∼𝑃𝛿
[𝑓(𝑋) ̸= 𝑌 ]. (E.5)

Defining the order of the factorization: We partition the CelebA attributes into

the following categories, and construct our factorization according to this order:

Demographics (Gender, Age), Facial Features (e.g., Narrow Eyes), Facial Hair (e.g.,

Mustache), Non-Facial Hair (e.g., Baldness), Items Worn (e.g., Lipstick), Expression

(e.g., Smiling). Within each category we also give an ordering of the attributes, which

defines the full factorization. The full ordering of attributes is given in Table E.4.

Finding Candidate Shifts: Using the CelebA training set, we construct a Taylor

approximation of the loss in Equation (E.5) as laid out in Thams et al. (2022), which

requires the use of plug-in estimators for the conditional means 𝜇𝐴𝑖
(𝐴1:𝑖−1) := E[𝐴𝑖 |

𝐴1:𝑖−1] and 𝜇ℓ(𝐴1:𝑖−1) = E[𝑓(𝑋) ̸= 𝑌 | 𝐴1:𝑖−1].
1

For both of these auxiliary functions, we use a gradient boosted classifier XGBClassifier

1We require one such estimator for each conditional distribution that is changing, but we note
that this is unaffected by the complexity of the shift functions themselves. In this experiment, we
consider simple shifts in the conditional log-odds of 𝜂𝑖(·) + 𝛿𝑖, but for more complex shift functions
𝜂𝑖(·) + 𝑠(·; 𝛿𝑖), the required estimators are the same.
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from the xgboost python package, with hyperparameters (maximum tree depth in

{2, 4, 6}) selected using cross-validation. Using these plug-in estimates, we solve for

the maximizer of the quadratic approximation with respect to the training set

𝛿*̂ = arg max
‖𝛿‖2≤𝜆

𝐸𝑛[ℓ(𝑓(𝑋), 𝑌 )] + 𝛿⊤SĜ1 +
1

2
𝛿⊤SG2

^ 𝛿 (E.6)

where SG1
^ , SG2

^ are the estimated gradient and Hessian of the loss E𝑃𝛿
[ℓ(𝑓(𝑋), 𝑌 )]

with respect to 𝛿, evaluated at 𝛿 = 0, and 𝐸𝑛[ℓ] is the empirical loss on the training

distribution.

Evaluating shifted performance We use the CelebA validation set for estimating

shifted performance using importance sampling, for the candidate 𝛿*̂ that is found

in the previous step. To construct these importance weights, we require estimates

of the original conditional probabilities 𝑃 (𝐴𝑖 = 1 | 𝐴1:𝑖). Here we fit an XGBoost

classifier for each conditional probability, using cross-validation to select the maximum

depth separately for each conditional distribution. These models are fit directly on

the validation dataset, and are then used to construct weights on the same dataset.
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Table E.1: Candidate worst-case 𝛿 found for the original blond hair classification
prompt, corresponding to Figure 7-3. Marginal proportions of each attribute before and
after the shift are given based on the validation dataset, and estimated (via importance
sampling on the validation dataset). Note that the importance sampling estimates are
not exact: For instance, the marginal distribution of “No Beard” is estimated to be
slightly over 100%.

Delta Pre-shift Post-shift Difference

Male -3.792 0.426 0.017 -0.409
Young -1.401 0.747 0.565 -0.181
Bags Under Eyes -0.749 0.207 0.074 -0.134
Big Lips -0.159 0.153 0.157 0.004
Big Nose -0.583 0.249 0.079 -0.170
Chubby 0.086 0.061 0.027 -0.034
Double Chin 0.027 0.049 0.019 -0.030
High Cheekbones -0.648 0.449 0.446 -0.004
Narrow Eyes -0.165 0.075 0.049 -0.026
Oval Face 0.060 0.280 0.293 0.013
Pale Skin 0.863 0.043 0.148 0.105
Pointy Nose 1.523 0.285 0.717 0.432
Rosy Cheeks 0.247 0.068 0.150 0.082
5 o Clock Shadow -0.009 0.118 0.004 -0.114
Mustache 0.213 0.050 0.003 -0.048
Sideburns 0.074 0.069 0.003 -0.065
Goatee 0.073 0.074 0.004 -0.070
No Beard -0.036 0.822 1.008 0.186
Bushy Eyebrows -0.555 0.142 0.026 -0.117
Bald 0.148 0.021 0.001 -0.019
Receding Hairline -0.290 0.072 0.027 -0.045
Bangs 0.773 0.147 0.409 0.263
Straight Hair -0.423 0.206 0.104 -0.102
Blond Hair -3.426 0.154 0.013 -0.140
Wearing Earrings -0.937 0.191 0.206 0.015
Wearing Hat -0.119 0.047 0.025 -0.023
Wearing Lipstick 0.672 0.446 0.844 0.398
Wearing Necklace -0.158 0.121 0.187 0.066
Wearing Necktie 0.124 0.073 0.004 -0.069
Heavy Makeup 0.589 0.390 0.766 0.376
Eyeglasses 0.041 0.070 0.043 -0.027
Arched Eyebrows -0.470 0.258 0.313 0.054
Mouth Slightly Open 0.434 0.482 0.588 0.106
Smiling 0.135 0.483 0.532 0.049
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Table E.2: Restriction to shifts that do not change the causal mechanisms
of the label: Candidate worst-case 𝛿 found for the original blond hair classification
prompt, where the shift is restricted to exclude direct interventions on hair related
features. For these features, we write “0*” to indicate that the value of 𝛿 is effectively
set to zero. That said, the proportions can still change, due to changes in the upstream
features such as gender and age (e.g., there are more individuals with blond hair in
the shifted distribution, likely due to the increased prevalence of women).

Delta Pre-shift Post-shift Difference

Male -4.144 0.426 0.012 -0.414
Young -3.101 0.747 0.195 -0.551
Bags Under Eyes -0.709 0.207 0.098 -0.109
Big Lips -0.118 0.153 0.147 -0.006
Big Nose -0.232 0.249 0.153 -0.096
Chubby 0.133 0.061 0.056 -0.005
Double Chin 0.164 0.049 0.042 -0.007
High Cheekbones -1.680 0.449 0.287 -0.162
Narrow Eyes -0.507 0.075 0.047 -0.028
Oval Face -0.222 0.280 0.153 -0.127
Pale Skin 0.758 0.043 0.146 0.103
Pointy Nose 1.301 0.285 0.587 0.302
Rosy Cheeks -0.282 0.068 0.081 0.012
5 o Clock Shadow 0.205 0.118 0.002 -0.116
Mustache 0.418 0.050 0.003 -0.048
Sideburns 0.461 0.069 0.004 -0.065
Goatee 0.443 0.074 0.004 -0.070
No Beard -0.432 0.822 0.985 0.162
Bushy Eyebrows -0.061 0.142 0.019 -0.124
Bald 0* 0.021 0.001 -0.020
Receding Hairline 0* 0.072 0.033 -0.039
Bangs 0* 0.147 0.284 0.137
Straight Hair 0* 0.206 0.110 -0.096
Blond Hair 0* 0.154 0.249 0.095
Wearing Earrings -0.939 0.191 0.211 0.021
Wearing Hat 0.209 0.047 0.044 -0.003
Wearing Lipstick 0.282 0.446 0.677 0.231
Wearing Necklace -0.167 0.121 0.210 0.089
Wearing Necktie 0.094 0.073 0.003 -0.070
Heavy Makeup 0.442 0.390 0.569 0.179
Eyeglasses 0.157 0.070 0.083 0.013
Arched Eyebrows -0.755 0.258 0.266 0.008
Mouth Slightly Open 0.676 0.482 0.581 0.099
Smiling -0.120 0.483 0.409 -0.074
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Table E.3: Restriction to shifts that do not change the marginal distribution
of the label: Candidate worst-case 𝛿 found for the original blond hair classification
prompt, where the shift is restricted to exclude direct interventions on hair related
features, and where the hair related features come first, to avoid any change in their
distribution. For these features, we write “0*” to indicate that the value of 𝛿 is effectively
set to zero.

Delta Pre-shift Post-shift Difference

Blond Hair 0* 0.154 0.145 -0.009
Bald 0* 0.021 0.013 -0.008
Receding Hairline 0* 0.072 0.059 -0.012
Bangs 2.219 0.147 0.615 0.469
Straight Hair -1.070 0.206 0.084 -0.122
Male -4.076 0.426 0.019 -0.406
Young -2.323 0.747 0.277 -0.469
Bags Under Eyes -0.594 0.207 0.114 -0.093
Big Lips -0.596 0.153 0.120 -0.034
Big Nose -0.629 0.249 0.112 -0.136
Chubby -0.086 0.061 0.036 -0.025
Double Chin 0.084 0.049 0.028 -0.021
High Cheekbones -0.356 0.449 0.600 0.151
Narrow Eyes -0.235 0.075 0.052 -0.024
Oval Face -0.110 0.280 0.220 -0.060
Pale Skin 0.733 0.043 0.111 0.068
Pointy Nose 1.999 0.285 0.781 0.496
Rosy Cheeks 0.208 0.068 0.169 0.101
5 o Clock Shadow -0.094 0.118 0.003 -0.115
Mustache 0.224 0.050 0.003 -0.047
Sideburns 0.222 0.069 0.003 -0.066
Goatee 0.231 0.074 0.004 -0.070
No Beard -0.181 0.822 1.006 0.183
Bushy Eyebrows -0.614 0.142 0.014 -0.128
Wearing Earrings -0.789 0.191 0.277 0.086
Wearing Hat 0.004 0.047 0.015 -0.032
Wearing Lipstick 0.430 0.446 0.824 0.378
Wearing Necklace -0.075 0.121 0.267 0.146
Wearing Necktie 0.038 0.073 0.007 -0.066
Heavy Makeup 0.353 0.390 0.703 0.313
Eyeglasses 0.069 0.070 0.066 -0.003
Arched Eyebrows -0.594 0.258 0.269 0.011
Mouth Slightly Open 0.403 0.482 0.659 0.178
Smiling -0.065 0.483 0.637 0.154
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Table E.4: Blond Hair Classification: List of all attributes in the assumed causal
order, with indications for which variables (i.e., conditional distributions) are allowed
to shift. All variables are binary: We exclude the attributes “Black Hair”, “Brown
Hair”, and “Grey Hair”, using the attribute “Blond Hair” as a single binary attribute.
We similarly exclude “Wavy Hair”, treating “Straight Hair” as a binary attribute. We
exclude the attribute “Attractive” from this list.

Attribute Group Attribute Full Shift Restricted Shift

N/A Blurry
Demographics Male * *
Demographics Young * *
Facial Features Bags Under Eyes * *
Facial Features Big Lips * *
Facial Features Big Nose * *
Facial Features Chubby * *
Facial Features Double Chin * *
Facial Features High Cheekbones * *
Facial Features Narrow Eyes * *
Facial Features Oval Face * *
Facial Features Pale Skin * *
Facial Features Pointy Nose * *
Facial Features Rosy Cheeks * *
Facial Hair 5 o Clock Shadow * *
Facial Hair Mustache * *
Facial Hair Sideburns * *
Facial Hair Goatee * *
Facial Hair No Beard * *
Facial Hair Bushy Eyebrows * *
Non-Facial Hair Bald *
Non-Facial Hair Receding Hairline *
Non-Facial Hair Bangs *
Non-Facial Hair Straight Hair *
Non-Facial Hair Blond Hair *
Items Worn Wearing Earrings * *
Items Worn Wearing Hat * *
Items Worn Wearing Lipstick * *
Items Worn Wearing Necklace * *
Items Worn Wearing Necktie * *
Items Worn Heavy Makeup * *
Items Worn Eyeglasses * *
Expression Arched Eyebrows * *
Expression Mouth Slightly Open * *
Expression Smiling * *
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